19. Let $K=\mathbb{Q}(\theta)$, where $\theta^{3}-\theta-1=0$. Prove that $\sqrt{\theta} \notin O_{K}$.

Solution. Suppose that

$$
\sqrt{\theta} \in K=\mathbb{Q}(\theta) .
$$

Then there exist $a, b, c \in \mathbb{Q}$ such that

$$
\sqrt{\theta}=a+b \theta+c \theta^{2} .
$$

Hence

$$
\begin{aligned}
\theta & =\left(a+b \theta+c \theta^{2}\right)^{2} \\
& =\left(a^{2}+2 b c\right)+\left(2 a b+c^{2}+2 b c\right) \theta+\left(b^{2}+c^{2}+2 a c\right) \theta^{2} .
\end{aligned}
$$

Thus

$$
\begin{align*}
& a^{2}+2 b c=0 \tag{1}\\
& 2 a b+2 b c+c^{2}=1 \tag{2}\\
& b^{2}+c^{2}+2 a c=0 \tag{3}
\end{align*}
$$

If $c=0$ then (1) gives $a=0$. This contradicts (2). Hence $c \neq 0$. Thus (1) gives

$$
b=\frac{-a^{2}}{2 c} .
$$

Then (3) gives

$$
\frac{a^{4}}{4 c^{2}}+c^{2}+2 a c=0
$$

that is

$$
\left(\frac{a}{c}\right)^{4}+8\left(\frac{a}{c}\right)+4=0 .
$$

Hence $m=a / c$ is a rational root of the quadratic polynomial $x^{4}+8 x+4 \in$ $\mathbb{Z}[x]$. Thus $m \in \mathbb{Z}$ and $m \mid 4$, so

$$
m= \pm 1, \pm 2, \pm 4 .
$$

This is a contradiction as

$$
m^{4}+8 m+4=13,-3,36,4,292,228,
$$

according as $m=1,-1,2,-2,4,-4$ respectively.

February 17, 2004

