14. Let p be a prime $\equiv 3(\bmod 8)$. Let $t+u \sqrt{p}$ be the fundamental unit of $O_{\mathbb{Q}(\sqrt{ })}$, which necessarily is of norm 1. Starting from $t^{2}-p u^{2}=1$, and using Dirichlet's way of proving Theorem 11.5.4, prove that the equation $x^{2}-p y^{2}=-2$ is solvable in integers x and y.

Solution. We suppose first that t is odd so that $t^{2} \equiv 1(\bmod 8)$. Then, from $t^{2}-p u^{2}=1$, we deduce that $u^{2} \equiv 0(\bmod 8)$ so that $u \equiv 0(\bmod 4)$. Hence

$$
t^{2}=p u^{2}+1 \equiv 1(\bmod 16)
$$

so that

$$
\begin{aligned}
& t \equiv 1(\bmod 8), \text { if } t \equiv 1(\bmod 4) \\
& t \equiv-1(\bmod 8), \text { if } t \equiv 3(\bmod 4) .
\end{aligned}
$$

First we treat the case $t \equiv 1(\bmod 8)$. In this case $\frac{t-1}{8}$ and $\frac{t+1}{2}$ are integers with

$$
\begin{aligned}
& \left(\frac{t-1}{8}\right)\left(\frac{t+1}{2}\right)=p\left(\frac{u}{4}\right)^{2} \\
& \frac{t+1}{2} \equiv 1(\bmod 4) \text { and } \operatorname{gcd}\left(\frac{t-1}{8}, \frac{t+1}{2}\right)=1
\end{aligned}
$$

Thus either

$$
\frac{t-1}{8}=p v^{2}, \frac{t+1}{2}=w^{2}, \frac{u}{4}=v w
$$

or

$$
\frac{t-1}{8}=v^{2}, \frac{t+1}{2}=p w^{2}, \frac{u}{4}=v w,
$$

for coprime integers v and w with w odd. The latter case cannot occur as

$$
\frac{t+1}{2} \equiv 1(\bmod 4), p w^{2} \equiv 3(\bmod 8) .
$$

In the former case we have

$$
w^{2}-4 p v^{2}=\left(\frac{t+1}{2}\right)-\left(\frac{t-1}{2}\right)=1
$$

Thus $w+2 v \sqrt{p}$ is a unit of norm 1. Clearly

$$
\begin{aligned}
(w+2 v \sqrt{p})^{2} & =\left(w^{2}+4 p v^{2}\right)+4 w v \sqrt{p} \\
& =\left(\frac{t+1}{2}+\frac{t-1}{2}\right)+u \sqrt{p} \\
& =t+u \sqrt{p}
\end{aligned}
$$

contradicting the minimality of $t+u \sqrt{p}$.
Now we treat the case $t \equiv-1(\bmod 8)$. In this case $\frac{t+1}{8}$ and $\frac{t-1}{2}$ are integers with

$$
\begin{aligned}
& \left(\frac{t-1}{8}\right)\left(\frac{t+1}{8}\right)=p\left(\frac{u}{4}\right)^{2} \\
& \frac{t-1}{2} \equiv-1(\bmod 4) \text { and } \operatorname{gcd}\left(\frac{t-1}{2}, \frac{t+1}{8}\right)=1
\end{aligned}
$$

Thus either

$$
\frac{t-1}{2}=p v^{2}, \frac{t+1}{8}=w^{2}, \frac{u}{4}=v w,
$$

or

$$
\frac{t-1}{2}=v^{2}, \frac{t+1}{8}=p w^{2}, \frac{u}{4}=v w,
$$

for coprime integers v and w with v odd. The latter case cannot occur as

$$
\frac{t-1}{2} \equiv 1(\bmod 4) \text { and } v^{2} \equiv 1(\bmod 4) .
$$

In the former case we have

$$
p v^{2}-4 w^{2}=\left(\frac{t-1}{2}\right)-\left(\frac{t+1}{2}\right)=-1
$$

so that $2 w+v \sqrt{p}$ is a unit of norm 1. Clearly

$$
(2 w+v \sqrt{p})^{2}=\left(4 w^{2}+p v^{2}\right)+4 w v \sqrt{p}=t+u \sqrt{p}
$$

contradicting the minimality of $t+u \sqrt{p}$. This proves that t is not odd, so t is even. Then, from $t^{2}-p u^{2}=1$, we deduce that $u \equiv 1(\bmod 2)$. Hence $t \pm 1$ are odd integers such that

$$
\begin{aligned}
& (t-1)(t+1)=p u^{2} \\
& \operatorname{gcd}(t-1, t+1)=1
\end{aligned}
$$

Thus either

$$
t-1=p v^{2}, t+1=w^{2}, u=v w
$$

or

$$
t-1=v^{2}, t+1=p w^{2}, u=v w
$$

for coprime odd integers v and w. In the former case we have

$$
w^{2}-p v^{2}=2,
$$

which is impossible as

$$
w^{2}-p v^{2} \equiv 1-3 \equiv-2(\bmod 8)
$$

Hence the latter possibility occurs and

$$
v^{2}-p w^{2}=-2 .
$$

February 17, 2004

