28. Let p be a prime with $p \equiv 3(\bmod 4)$. It is known that $h(\mathbb{Q}(\sqrt{p}))$ is odd. Use this fact to prove that there exist integers a and b such that

$$
a^{2}-p b^{2}=(-1)^{(p+1) / 4} 2 .
$$

[HINT: Consider the ideal $<2,1+\sqrt{p}>$.]
Solution. Let p be a prime with $p \equiv 3(\bmod 4)$ so that $h=h(\mathbb{Q}(\sqrt{p}))$ is odd. We consider the ideal $<2,1+\sqrt{p}>$ of $O_{\mathbb{Q}(\sqrt{p})}=\mathbb{Z}+\mathbb{Z} \sqrt{p}$. On the one hand we have

$$
<2,1+\sqrt{p}>^{2}=<2>
$$

and on the other hand, as h is the class number of $\mathbb{Q}(\sqrt{p})$, we have

$$
<2,1+\sqrt{p}>^{h}=<\alpha>
$$

for some $\alpha \in \mathbb{Z}+\mathbb{Z} \sqrt{p}$. As h is odd, $\frac{h-1}{2}$ is integer, and

$$
\begin{aligned}
<2,1+\sqrt{p} & >=<2,1+\sqrt{p}>^{h}\left(<2,1+\sqrt{p}>^{2}\right)^{-(h-1) / 2} \\
= & <\alpha><2>^{-(h-1) / 2} \\
= & <\frac{\alpha}{2^{(h-1) / 2}}>
\end{aligned}
$$

Since $<2,1+\sqrt{p}>$ is an integral ideal of $\mathbb{Z}+\mathbb{Z} \sqrt{p}$, we have $\frac{\alpha}{2^{(h-1) / 2}} \in$ $\mathbb{Z}+\mathbb{Z} \sqrt{p}$. Thus there exist integers a and b such that

$$
\frac{\alpha}{2^{(h-1) / 2}}=a+b \sqrt{p} .
$$

Then

$$
<2,1+\sqrt{p}>=<a+b \sqrt{p}>.
$$

Takimg norms, we obtain

$$
2=\left|a^{2}-p b^{2}\right|,
$$

so that

$$
a^{2}-p b^{2}= \pm 2
$$

If $b \equiv 0(\bmod 2)$ then $a^{2} \equiv 2(\bmod 4)$, a contradiction. Hence $b \equiv 1(\bmod 2)$. Thus $a \equiv 1(\bmod 2)$ and

$$
1-p \equiv \pm 2(\bmod 8)
$$

so that

$$
\pm 1 \equiv \frac{1-p}{2} \equiv(-1)^{(p+1) / 4}(\bmod 4),
$$

that is

$$
\pm 1=(-1)^{(p+1) / 4}
$$

and

$$
a^{2}-p b^{2}=(-1)^{(p+1) / 4} 2
$$

February 17, 2004

