CHAPTER 2, QUESTION 10

10. Use Theorem 2.2.3 to prove that $\mathbb{Z}+\mathbb{Z}\left(\frac{1+\sqrt{77}}{2}\right)$ is not Euclidean.

Solution. We choose

$$
m=77, p=5, q=3, r=49
$$

Then,

$$
\begin{aligned}
\left(\frac{m}{p}\right)=\left(\frac{77}{5}\right) & =\left(\frac{2}{5}\right)=-1, \\
\left(\frac{m}{q}\right)=\left(\frac{77}{3}\right) & =\left(\frac{2}{3}\right)=-1, \\
(m-1) r^{2}-4 m\left(\frac{(m-1) r^{2}}{4 m}\right) & =76 \cdot 49^{2}-4 \cdot 77\left(\frac{76 \cdot 49^{2}}{4 \cdot 77}\right) \\
& =182476-308 \cdot 592 \\
& =140 \\
& =5 \cdot 2^{2} \cdot 7, \\
(m-1) r^{2}-4 m\left(\frac{(m-1) r^{2}}{4 m}\right)-4 m & =140-308=-168=-3 \cdot 2^{3} \cdot 7 .
\end{aligned}
$$

Hence, by Theorem 2.3.3, $\mathbb{Z}+\mathbb{Z}\left(\frac{1+\sqrt{77}}{2}\right)$ is not Euclidean with respect to ϕ_{77}.

June 20, 2004

