11. Prove that if p is a prime with $p \equiv 3 \pmod{4}$ then there do not exist integers x and y such that $p = x^2 + y^2$.

Solution. Let p be a prime with $p \equiv 3 \pmod{4}$. Suppose that there exist integers x and y such that $p = x^2 + y^2$. Now $x^2 \equiv 0$ or $1 \pmod{4}$ and $y^2 \equiv 0$ or $1 \pmod{4}$ so that $p = x^2 + y^2 \equiv 0 + 0$, 0 + 1, or $1 + 1 \pmod{4}$, that is

$$p \equiv 0, 1 \text{ or } 2 \pmod{4},$$

contradicting $p \equiv 3 \pmod{4}$. Hence there are no integers x and y such that $p = x^2 + y^2$ when p is a prime $\equiv 3 \pmod{4}$. Note that the result is true if p is an arbitrary integer $\equiv 3 \pmod{4}$.

June 20, 2004