CHAPTER 2, QUESTION 11
11. Prove that if p is a prime with $p \equiv 3(\bmod 4)$ then there do not exist integers x and y such that $p=x^{2}+y^{2}$.

Solution. Let p be a prime with $p \equiv 3(\bmod 4)$. Suppose that there exist integers x and y such that $p=x^{2}+y^{2}$. Now $x^{2} \equiv 0$ or $1(\bmod 4)$ and $y^{2} \equiv 0$ or $1(\bmod 4)$ so that $p=x^{2}+y^{2} \equiv 0+0,0+1$, or $1+1(\bmod 4)$, that is

$$
p \equiv 0,1 \text { or } 2(\bmod 4),
$$

contradicting $p \equiv 3(\bmod 4)$. Hence there are no integers x and y such that $p=x^{2}+y^{2}$ when p is a prime $\equiv 3(\bmod 4)$. Note that the result is true if p is an arbitrary integer $\equiv 3(\bmod 4)$.

June 20, 2004

