CHAPTER 2, QUESTION 12

12. Let p be a prime. Use Theorem 2.5.1 and Question 11 to deduce that

$$
p=x^{2}+y^{2} \Longleftrightarrow p=2 \text { or } p \equiv 1(\bmod 4) .
$$

Solution. Let p be a prime. If $p=2$ then $p=x^{2}+y^{2}$ with $x=y=1$. If $p \equiv 1$ $(\bmod 4)$ there exist integers x and y such that $p=x^{2}+y^{2}$ by Theorem 2.5.1. If $p \equiv 3(\bmod 4)$ there do not exist integers x and y such that $p=x^{2}+y^{2}$ by Question 11. Hence,

$$
p=x^{2}+y^{2} \Longleftrightarrow p=2 \text { or } p \equiv 1(\bmod 4) .
$$

June 20, 2004

