13. Prove that if p is a prime with $p \equiv 5,7(\bmod 8)$ then there do not exist integers x and y such that $p=x^{2}+2 y^{2}$.

Solution. Let p be a prime with $p \equiv 5$ or $7(\bmod 8)$. Suppose that there exist integers x and y such that

$$
p=x^{2}+2 y^{2} .
$$

Now $x^{2} \equiv 0,1$ or $4(\bmod 8)$ and $2 y^{2} \equiv 0$ or $2(\bmod 8)$ so that

$$
p=x^{2}+2 y^{2} \equiv 0+0,1+0,4+0,0+2,1+2 \text { or } 4+2(\bmod 8),
$$

that is

$$
p \equiv 0,1,2,3,4 \text { or } 6(\bmod 8),
$$

contradicting $p \equiv 5$ or $7(\bmod 8)$. Hence if p is a prime with $p \equiv 5$ or 7 $(\bmod 8)$ there are no integers x and y such that $p=x^{2}+2 y^{2}$.

June 20, 2004

