13. Prove that if p is a prime with $p \equiv 5$, 7 (mod 8) then there do not exist integers x and y such that $p = x^2 + 2y^2$.

Solution. Let p be a prime with $p \equiv 5 \text{ or } 7 \pmod{8}$. Suppose that there exist integers x and y such that

$$p = x^2 + 2y^2.$$

Now $x^2 \equiv 0$, 1 or 4 (mod 8) and $2y^2 \equiv 0$ or 2 (mod 8) so that

$$p = x^2 + 2y^2 \equiv 0 + 0, \ 1 + 0, \ 4 + 0, \ 0 + 2, \ 1 + 2 \text{ or } 4 + 2 \pmod{8},$$

that is

 $p \equiv 0, 1, 2, 3, 4 \text{ or } 6 \pmod{8},$

contradicting $p \equiv 5 \text{ or } 7 \pmod{8}$. Hence if p is a prime with $p \equiv 5 \text{ or } 7 \pmod{8}$ there are no integers x and y such that $p = x^2 + 2y^2$.

June 20, 2004