17. Prove that if p is a prime with $p \equiv 3,5,6(\bmod 7)$ then there do not exist integers x and y such that $p=x^{2}+x y+2 y^{2}$.

Solution. Let p be a prime with $p \equiv 3,5 \operatorname{or} 6(\bmod 7)$. Suppose that there exist integers x and y such that $p=x^{2}+x y+2 y^{2}$. From this equation it is clear that $p \nmid x$ and $p \nmid y$. Then $4 p=(2 x+y)^{2}+7 y^{2}$, so that $p \nmid 2 x+y$. Hence,

$$
\left(\frac{-7}{p}\right)=\left(\frac{-7 y^{2}}{p}\right)=\left(\frac{(2 x+y)^{2}-4 p}{p}\right)=\left(\frac{(2 x+y)^{2}}{p}\right)=1 .
$$

But $\left(\frac{-7}{p}\right)=-1$ as $p \equiv 3,5,6(\bmod 7)$, a contradiction. Hence no such integers x and y exist.

June 20, 2004

