18. Let p be a prime. Use Theorem 2.5.4 and Question 17 to deduce that

$$
p=x^{2}+x y+2 y^{2} \Longleftrightarrow p=7 \text { or } p \equiv 1,2,4(\bmod 7) .
$$

then there do not exist integers x and y such that $p=x^{2}+x y+2 y^{2}$.
Solution. Let p be a prime. If $p=7$ then $p=x^{2}+x y+2 y^{2}$ with $x=-1$ and $y=2$. If $p \equiv 1,2,4(\bmod 7)$ there exist integers x and y such that $p=x^{2}+x y+2 y^{2}$ by Theorem 2.5.4. If $p \equiv 3,5,6(\bmod 7)$ there do not exist integers x and y such that $p=x^{2}+x y+2 y^{2}$ by Question 17. Hence if p is a prime

$$
p=x^{2}+x y+2 y^{2} \Longleftrightarrow p=7 \text { or } p \equiv 1,2,4(\bmod 7) .
$$

June 20, 2004

