19. Prove that if m is a positive integer possessing a prime divisor $q \equiv 3 \pmod{4}$ then there are no integers T and U suct that $T^2 - mU^2 = -1$.

Solution. Suppose that there exist integers T and U suct that $T^2 - mU^2 = -1$, where m is a positive integer possessing a prime divisor $q \equiv 3 \pmod{4}$. Then

$$T^2 \equiv T^2 - mU^2 \equiv -1 \pmod{q}$$

so that

$$\left(\frac{-1}{q}\right) = \left(\frac{T^2}{q}\right) = 1,$$

contradicting $q \equiv 3 \pmod{4}$. Hence no such integers T and U exist.

June 20, 2004