## CHAPTER 2, QUESTION 19

19. Prove that if $m$ is a positive integer possessing a prime divisor $q \equiv 3$ $(\bmod 4)$ then there are no integers $T$ and $U$ suct that $T^{2}-m U^{2}=-1$.

Solution. Suppose that there exist integers $T$ and $U$ suct that $T^{2}-m U^{2}=$ -1 , where $m$ is a positive integer possessing a prime divisor $q \equiv 3(\bmod 4)$. Then

$$
T^{2} \equiv T^{2}-m U^{2} \equiv-1(\bmod q)
$$

so that

$$
\left(\frac{-1}{q}\right)=\left(\frac{T^{2}}{q}\right)=1
$$

contradicting $q \equiv 3(\bmod 4)$. Hence no such integers $T$ and $U$ exist.

June 20, 2004

