EXERCISES 2, QUESTION 2

2. Prove Theorem 2.2.4.

Solution. Suppose first that $\mathbb{Z}+\mathbb{Z}\left(\frac{1+\sqrt{m}}{2}\right)$ is Euclidean with respect to ϕ_{m}, where m is a squarefree integer $\equiv 1(\bmod 4)$. Let $x, y \in \mathbb{Q}$. Then $x+y \sqrt{m}=$ $(r+s \sqrt{m}) / t$ for integers r, s, t with $t \neq 0$. As ϕ_{m} is a Euclidean function on $\mathbb{Z}+\mathbb{Z}\left(\frac{1+\sqrt{m}}{2}\right)$ there exist $a+b\left(\frac{1+\sqrt{m}}{2}\right), c+d\left(\frac{1+\sqrt{m}}{2}\right) \in \mathbb{Z}+\mathbb{Z}\left(\frac{1+\sqrt{m}}{2}\right)$ such that

$$
r+s \sqrt{m}=t\left(a+b\left(\frac{1+\sqrt{m}}{2}\right)\right)+\left(c+d\left(\frac{1+\sqrt{m}}{2}\right)\right)
$$

with

$$
\phi_{m}\left(c+d\left(\frac{1+\sqrt{m}}{2}\right)\right)<\phi_{m}(t) .
$$

Hence

$$
\begin{aligned}
& \phi_{m}\left((x+y \sqrt{m})-\left(a+b\left(\frac{1+\sqrt{m}}{2}\right)\right)\right) \\
&=\phi_{m}\left(\frac{r+s \sqrt{m}}{t}-\left(a+b\left(\frac{1+\sqrt{m}}{2}\right)\right)\right) \\
&=\phi_{m}\left(\frac{r+s \sqrt{m}-t\left(a+b\left(\frac{1+\sqrt{m}}{2}\right)\right)}{t}\right) \\
&=\phi_{m}\left(\frac{c+d\left(\frac{1+\sqrt{m}}{2}\right)}{t}\right) \\
&=\frac{\phi_{m}\left(c+d\left(\frac{1+\sqrt{m}}{2}\right)\right)}{\phi_{m}(t)}(\text { by Lemma 2.2.1(d)) } \\
&<1,
\end{aligned}
$$

as required.
Now suppose that for all $x, y \in \mathbb{Q}$ there exist $a, b \in \mathbb{Z}$ such that

$$
\begin{equation*}
\phi_{m}\left((x+y \sqrt{m})-\left(a+b\left(\frac{1+\sqrt{m}}{2}\right)\right)\right)<1 . \tag{1}
\end{equation*}
$$

To show that $\mathbb{Z}+\mathbb{Z}\left(\frac{1+\sqrt{m}}{2}\right)$ is Euclidean with respect to ϕ_{m}, we must show that (2.1.1) and (2.1.2) hold. The inequality (2.1.1) holds in view of Lemma 2.2.1 (f). We now show that (2.1.2) holds. Let $r+s\left(\frac{1+\sqrt{m}}{2}\right), t+u\left(\frac{1+\sqrt{m}}{2}\right) \in$ $\mathbb{Z}+\mathbb{Z}\left(\frac{1+\sqrt{m}}{2}\right)$ with $t+u\left(\frac{1+\sqrt{m}}{2}\right) \neq 0$. Then

$$
\frac{r+s\left(\frac{1+\sqrt{m}}{2}\right)}{t+u\left(\frac{1+\sqrt{m}}{2}\right)}=x+y \sqrt{m},
$$

where

$$
x=\frac{4 r t+2 r u+2 s t+(1-m) s u}{4 t^{2}+4 t u+(1-m) u^{2}} \in \mathbb{Q}
$$

and

$$
y=\frac{2 s t-2 r u}{4 t^{2}+4 t u+(1-m) u^{2}} \in \mathbb{Q} .
$$

We note that

$$
\begin{aligned}
t+u\left(\frac{1+\sqrt{m}}{2}\right) \neq 0 & \Longrightarrow 2 t+u+u \sqrt{m} \neq 0 \\
& \Longrightarrow(2 t+u, u) \neq(0,0) \\
& \Longrightarrow(2 t+u)^{2}-m u^{2} \neq 0(\text { as } m \text { is squarefree }) \\
& \Longrightarrow 4 t^{2}+4 t u+(1-m) u^{2} \neq 0 .
\end{aligned}
$$

By (1) there exists $a+b\left(\frac{1+\sqrt{m}}{2}\right) \in \mathbb{Z}+\mathbb{Z}\left(\frac{1+\sqrt{m}}{2}\right)$ such that

$$
\phi_{m}\left((x+y \sqrt{m})-\left(a+b\left(\frac{1+\sqrt{m}}{2}\right)\right)\right)<1 .
$$

Set $c=r-a t-b u\left(\frac{m-1}{4}\right) \in \mathbb{Z}$ and $d=s-a u-b t-b u \in \mathbb{Z}$ and $d=$ $s-a u-b t-b u \in \mathbb{Z}$, so that

$$
\begin{aligned}
c+d & \left(\frac{1+\sqrt{m}}{2}\right) \\
& =\left(r-a t-b u\left(\frac{m-1}{4}\right)\right)+(s-a u-b t-b w)\left(\frac{1+\sqrt{m}}{2}\right) \\
& =\left(r+s\left(\frac{1+\sqrt{m}}{2}\right)\right)-\left(a+b\left(\frac{1+\sqrt{m}}{2}\right)\right)\left(t+u\left(\frac{1+\sqrt{m}}{2}\right)\right)
\end{aligned}
$$

as

$$
\left(\frac{1+\sqrt{m}}{2}\right)^{2}=\frac{m-1}{4}+\left(\frac{1+\sqrt{m}}{2}\right)
$$

Hence

$$
\begin{aligned}
r+ & s\left(\frac{1+\sqrt{m}}{2}\right) \\
& =\left(a+b\left(\frac{1+\sqrt{m}}{2}\right)\right)\left(t+u\left(\frac{1+\sqrt{m}}{2}\right)\right)+\left(c+d\left(\frac{1+\sqrt{m}}{2}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\phi_{m} & \left(c+d\left(\frac{1+\sqrt{m}}{2}\right)\right) \\
= & \phi_{m}\left(\left(r+s\left(\frac{1+\sqrt{m}}{2}\right)\right)-\left(a+b\left(\frac{1+\sqrt{m}}{2}\right)\right)\left(t+u\left(\frac{1+\sqrt{m}}{2}\right)\right)\right) \\
= & \phi_{m}\left((x+y \sqrt{m})\left(t+u\left(\frac{1+\sqrt{m}}{2}\right)\right)\right. \\
& \left.\quad-\left(a+b\left(\frac{1+\sqrt{m}}{2}\right)\right)\left(t+u\left(\frac{1+\sqrt{m}}{2}\right)\right)\right) \\
= & \phi_{m}\left(\left(t+u\left(\frac{1+\sqrt{m}}{2}\right)\right)\left(x+y \sqrt{m}-\left(a+b\left(\frac{1+\sqrt{m}}{2}\right)\right)\right)\right) \\
= & \phi_{m}\left(t+u\left(\frac{1+\sqrt{m}}{2}\right)\right) \phi_{m}\left(x+y \sqrt{m}-\left(a+b\left(\frac{1+\sqrt{m}}{2}\right)\right)\right) \\
& <\phi_{m}\left(t+u\left(\frac{1+\sqrt{m}}{2}\right)\right),
\end{aligned}
$$

by Lemma 2.2.1(d), which completes the proof of (2.1.2).

February 12, 2004

