21. Let p be a prime with $p\equiv 1,\ 5,\ 19,\ 23\ ({\rm mod}\ 24).$ Deduce from Theorem 2.5.8 that

$$p = x^2 - 6y^2$$
, if $p \equiv 1$, 19 (mod 24),
 $p = 6y^2 - x^2$, if $p \equiv 5$, 23 (mod 24),

for some integers x and y.

Solution. Let p be a prime with $p \equiv 1, 5, 19, 23 \pmod{24}$. By Theorem 2.5.8 there exist integers x and y such that either $p = x^2 - 6y^2$ or $p = 6y^2 - x^2$. Suppose $p \equiv 1$ or 19 (mod 24). Then $p \equiv 1 \pmod{3}$. As $6y^2 - x^2 \equiv -x^2 \equiv 0$ or 2 (mod 3), $p \neq 6y^2 - x^2$. Hence $p = x^2 - 6y^2$.

Suppose $p \equiv 5 \text{ or } 23 \pmod{24}$. Then $p \equiv 2 \pmod{3}$. As $x^2 - 6y^2 \equiv x^2 \equiv 0 \text{ or } 1 \pmod{3}$, $p \neq x^2 - 6y^2$. Hence $p = 6y^2 - x^2$.

June 20, 2004