22. Prove that the subdomain $\mathbb{Z}+3 \mathbb{Z} \sqrt{-2}$ of the Euclidean domain $\mathbb{Z}+\mathbb{Z} \sqrt{-2}$ is not Euclidean.

Solution. Let $D=\mathbb{Z}+3 \mathbb{Z} \sqrt{-2}=\mathbb{Z}+3 \mathbb{Z} \sqrt{-18}$. By Question 3 of Exercise 1 we see that $U(D)=\{ \pm 1\}$. Hence $\tilde{D}=\{-1,0,1\}$. By Question 36 of Exercises 1, 2 and 3 are irreducible in D. Suppose that u is a universal side divisor in D. Then, u must divide one of the $2-1,2-0,2+1$, that is, one of $1,2,3$. But u being a universal side divisor is not a unit so $u \nmid 1$. Hence $u \mid 2$ or $u \mid 3$. Both 2 and 3 are irreducibles so $u=2,-2,3$ or -3 . However none of these divides

$$
\sqrt{-18}-1, \quad \sqrt{-18}, \quad \sqrt{-18}+1
$$

This is a contradiction. Hence D contains no universal side divisors. Thus, by Theorem 2.3.6, D is not Euclidean.

June 20, 2004

