CHAPTER 2, QUESTION 26

26. Let m be a positive integer with $m \equiv 1(\bmod 4)$. Show that the solvability of the equation $T^{2}+T U+\frac{1}{4}(1-m) U^{2}=-1$ in integers T and U (see Theorem 1.4.5) is equivalent to the solvability of the equation $X^{2}-m Y^{2}=-4$ in integers X and Y.

Solution. Let m be a positive integer with $m \equiv 1(\bmod 4)$ so that $\frac{1}{4}(1-m) \in$ \mathbb{Z}.

Suppose that there exist integers T and U such that

$$
T^{2}+T U+\frac{1}{4}(1-m) U^{2}=-1
$$

Then

$$
(2 T+U)^{2}-m U^{2}=4\left(T^{2}+T U+\frac{1}{4}(1-m) U^{2}\right)=-4 .
$$

Hence $X^{2}-m Y^{2}=-4$ is solvable in integers X and Y with $X=2 T+U$ and $Y=U$.

Conversly suppose that there exist integers X and Y such that

$$
X^{2}-m Y^{2}=-4
$$

As m is odd we see that $X \equiv Y(\bmod 2)$. Define $T, U \in \mathbb{Z}$ by

$$
T=\frac{X-Y}{2}, \quad U=Y
$$

Then, $2 T+U=X$ and

$$
\left.T^{2}+T U+\frac{1}{4}(1-m) U^{2}\right)=\frac{1}{4}\left((2 T+U)^{2}-m U^{2}\right)=\frac{X^{2}-m Y^{2}}{4}=-1
$$

June 20, 2004

