27. Let m be a positive integer with $m \equiv 1(\bmod 4)$ which possesses a prime divisor $q \equiv 3(\bmod 4)$. Prove that there are no integers T and U such that $T^{2}+T U+\frac{1}{4}(1-m) U^{2}=-1$.

Solution. Let m be a positive integer with $m \equiv 1(\bmod 4)$, which possesses a prime divisor $q \equiv 3(\bmod 4)$. Suppose that there exist integers T and U such that

$$
T^{2}+T U+\frac{1}{4}(1-m) U^{2}=-1
$$

By Question 26 there exist integers X and Y such that

$$
X^{2}-m Y^{2}=-4
$$

As $q \mid m$ and q is odd, we see that $q \nmid X$. Then, as $q \equiv 3(\bmod 4)$, we obtain

$$
-1=\left(\frac{-1}{q}\right)=\left(\frac{-4}{q}\right)=\left(\frac{X^{2}-m Y^{2}}{q}\right)=\left(\frac{X^{2}}{q}\right)=1
$$

a contradiction. Hence no such integers T and U exist.

June 20, 2004

