27. Let *m* be a positive integer with $m \equiv 1 \pmod{4}$ which possesses a prime divisor $q \equiv 3 \pmod{4}$. Prove that there are no integers *T* and *U* such that $T^2 + TU + \frac{1}{4}(1-m)U^2 = -1$.

Solution. Let m be a positive integer with $m \equiv 1 \pmod{4}$, which possesses a prime divisor $q \equiv 3 \pmod{4}$. Suppose that there exist integers T and U such that

$$T^{2} + TU + \frac{1}{4}(1-m)U^{2} = -1.$$

By Question 26 there exist integers X and Y such that

$$X^2 - mY^2 = -4.$$

As $q \mid m$ and q is odd, we see that $q \nmid X$. Then, as $q \equiv 3 \pmod{4}$, we obtain

$$-1 = \left(\frac{-1}{q}\right) = \left(\frac{-4}{q}\right) = \left(\frac{X^2 - mY^2}{q}\right) = \left(\frac{X^2}{q}\right) = 1,$$

a contradiction. Hence no such integers T and U exist.

June 20, 2004