28. Prove that if p is a prime with $p \equiv 1,4(\bmod 5)$ then there are integers x and y such that $p=x^{2}+x y-y^{2}$. [Hint: Use Theorems 1.4.5 and 2.2.7.]

Solution. Let p be a prime with $p \equiv 1$ or $4(\bmod 5)$. Then, by the law of quadratic reciprocity, $\left(\frac{5}{p}\right)=\left(\frac{p}{5}\right)=\left(\frac{1 \text { or } 4}{5}\right)=1$. The domain $\mathbb{Z}+$ $\mathbb{Z}\left(\frac{1+\sqrt{5}}{2}\right)$ is Euclidean with respect to ϕ_{5} by Theorem 2.2.7. Then, by Theorem 2.1.2, $\mathbb{Z}+\mathbb{Z}\left(\frac{1+\sqrt{5}}{2}\right)$ is a principal ideal domain. Now

$$
T^{2}+T U-U^{2}=-1
$$

for $T=0, U=1$. So, by Theorem 1.4.5, there exist integers x and y such that $p=x^{2}+x y-y^{2}$.

June 20, 2004

