29. Use Question 12 to show that the irreducibles in $\mathbb{Z}+\mathbb{Z} i$ are $1+i$ and its associates, $x \pm i y$ where $x^{2}+y^{2}=p($ prime $) \equiv 1(\bmod 4)$ and their associates, and $q($ prime $) \equiv 3(\bmod 4)$ and its associates.

Solution. Let π be an irreducible in $\mathbb{Z}+\mathbb{Z} i$. Clearly, $\pi \mid \pi \bar{\pi}$ in $\mathbb{Z}+\mathbb{Z} i$, so that $\pi \mid a$ in $\mathbb{Z}+\mathbb{Z} i$ for some $a \in \mathbb{Z}$. As π (being an irreducible) is neither 0 nor a unit, it is clear that $a \neq 0, \pm 1$. Hence a has a nontrivial factorization into primes in \mathbb{Z}, say

$$
a=p_{1} \ldots p_{k}
$$

where $k \in \mathbb{N}$ and each p_{i} is a prime in \mathbb{Z}. As $\mathbb{Z}+\mathbb{Z} i$ is a principal ideal domain (Theorem 2.2.3), π is a prime in $\mathbb{Z}+\mathbb{Z} i$ (Theorem 1.4.3). Hence, as $\pi \mid p_{1} \ldots p_{k}$, we deduce that $\pi \mid p_{i}$ for some $i \in\{1,2, \ldots, k\}$. We have shown the existence of a rational prime p such that $\pi \mid p$. Suppose there exists another prime $q \neq p$ such that $\pi \mid q$. As $\operatorname{gcd}(p, q)=1$ there exist integers r and s such that

$$
r p+s q=1
$$

As $\pi \mid p$ and $\pi \mid q$, we see that $\pi \mid 1$, contradicting that π is an irreducible of $\mathbb{Z}+\mathbb{Z} i$. Hence, for each irreducible π in $\mathbb{Z}+\mathbb{Z} i$, there exist a unique prime p in \mathbb{Z} such that $\pi \mid p$. Thus we can find all the irreducibles in $\mathbb{Z}+\mathbb{Z} i$ by factoring all the rational primes p into irreducibles in $\mathbb{Z}+\mathbb{Z} i$.

If $p=2$ we have

$$
2=-i(1+i)^{2}
$$

where $-i$ is a unit of $\mathbb{Z}+\mathbb{Z} i$. It is easily checked that $1+i$ is an irreducible in $\mathbb{Z}+\mathbb{Z} i$ and if π is a prime dividing 2 then π is an associate of $1+i$.

If $p \equiv 1(\bmod 4)$ by Theorem 2.5.1 there are integers x and y such that $p=x^{2}+y^{2}$. Hence

$$
p=(x+i y)(x-i y)
$$

in $\mathbb{Z}+\mathbb{Z} i$. It is easily checked that $x \pm i y$ are nonassociated irreducibles in $\mathbb{Z}+\mathbb{Z} i$, and that any prime π dividing p is an associate of $x+i y$ or $x-i y$.

Finally, if $p \equiv 3(\bmod 4)$,it is easily verified using Question 12 that p is a prime in $\mathbb{Z}+\mathbb{Z} i$.

As $U(\mathbb{Z}+\mathbb{Z} i)=\{1, i,-1,-i\}$ (Exercise 1, Question 1) the irreducibles in $\mathbb{Z}+\mathbb{Z} i$ are
$1+i,-1+i,-1-i, 1-i ;$
$x+i y,-y+i x,-x-i y, y-i x$,
$x-i y, y+i x,-x+i y,-y-i x$, where $x^{2}+y^{2}=p(\operatorname{prime}) \equiv 1(\bmod 4)$;
$q, i q,-q,-i q$, where $q($ prime $) \equiv 3(\bmod 4)$.

June 20, 2004

