29. Use Question 12 to show that the irreducibles in $\mathbb{Z} + \mathbb{Z}i$ are 1 + i and its associates, $x \pm iy$ where $x^2 + y^2 = p$ (prime) $\equiv 1 \pmod{4}$ and their associates, and q (prime) $\equiv 3 \pmod{4}$ and its associates.

Solution. Let π be an irreducible in $\mathbb{Z} + \mathbb{Z}i$. Clearly, $\pi \mid \pi\bar{\pi}$ in $\mathbb{Z} + \mathbb{Z}i$, so that $\pi \mid a$ in $\mathbb{Z} + \mathbb{Z}i$ for some $a \in \mathbb{Z}$. As π (being an irreducible) is neither 0 nor a unit, it is clear that $a \neq 0, \pm 1$. Hence a has a nontrivial factorization into primes in \mathbb{Z} , say

$$a=p_1\ldots p_k,$$

where $k \in \mathbb{N}$ and each p_i is a prime in \mathbb{Z} . As $\mathbb{Z} + \mathbb{Z}i$ is a principal ideal domain (Theorem 2.2.3), π is a prime in $\mathbb{Z} + \mathbb{Z}i$ (Theorem 1.4.3). Hence, as $\pi \mid p_1 \dots p_k$, we deduce that $\pi \mid p_i$ for some $i \in \{1, 2, \dots, k\}$. We have shown the existence of a rational prime p such that $\pi \mid p$. Suppose there exists another prime $q \neq p$ such that $\pi \mid q$. As gcd(p,q) = 1 there exist integers rand s such that

$$rp + sq = 1.$$

As $\pi \mid p$ and $\pi \mid q$, we see that $\pi \mid 1$, contradicting that π is an irreducible of $\mathbb{Z} + \mathbb{Z}i$. Hence, for each irreducible π in $\mathbb{Z} + \mathbb{Z}i$, there exist a unique prime p in \mathbb{Z} such that $\pi \mid p$. Thus we can find all the irreducibles in $\mathbb{Z} + \mathbb{Z}i$ by factoring all the rational primes p into irreducibles in $\mathbb{Z} + \mathbb{Z}i$.

If p = 2 we have

$$2 = -i(1+i)^2,$$

where -i is a unit of $\mathbb{Z} + \mathbb{Z}i$. It is easily checked that 1 + i is an irreducible in $\mathbb{Z} + \mathbb{Z}i$ and if π is a prime dividing 2 then π is an associate of 1 + i.

If $p \equiv 1 \pmod{4}$ by Theorem 2.5.1 there are integers x and y such that $p = x^2 + y^2$. Hence

$$p = (x + iy)(x - iy)$$

in $\mathbb{Z} + \mathbb{Z}i$. It is easily checked that $x \pm iy$ are nonassociated irreducibles in $\mathbb{Z} + \mathbb{Z}i$, and that any prime π dividing p is an associate of x + iy or x - iy.

Finally, if $p \equiv 3 \pmod{4}$, it is easily verified using Question 12 that p is a prime in $\mathbb{Z} + \mathbb{Z}i$.

As $U(\mathbb{Z} + \mathbb{Z}i) = \{1, i, -1, -i\}$ (Exercise 1, Question 1) the irreducibles in $\mathbb{Z} + \mathbb{Z}i$ are

 $\begin{array}{lll} 1+i, & -1+i, & -1-i, \ 1-i; \\ x+iy, & -y+ix, & -x-iy, \ y-ix, \\ x-iy, \ y+ix, & -x+iy, & -y-ix, \ \text{where} \ x^2+y^2=p \ (\text{prime})\equiv 1 \ (\text{mod} \ 4); \\ q, \ iq, \ -q, \ -iq, \ \text{where} \ q \ (\text{prime}) \ \equiv 3 \ (\text{mod} \ 4). \end{array}$

June 20, 2004