EXERCISES 2, QUESTION 7

7. Use Theorem 2.3.1 to show that $\mathbb{Z}+\mathbb{Z} \sqrt{26}$ is not Euclidean with respect to ϕ_{26}.

Solution. Let

$$
m=26, p=3, q=7, t=4, u=2, r=8 .
$$

Then

$$
\begin{gathered}
\left(\frac{m}{p}\right)=\left(\frac{26}{3}\right)=\left(\frac{-1}{3}\right)=-1, \\
\left(\frac{m}{q}\right)=\left(\frac{26}{7}\right)=\left(\frac{-2}{7}\right)=-1, \\
p t+q u=3 \times 4+7 \times 2=12+14=26=m, p \nmid t, q \nmid u, \\
r^{2} \equiv 64 \equiv 12 \equiv p t(\bmod 26) .
\end{gathered}
$$

Hence, by Theorem 2.3.1, $\mathbb{Z}+\mathbb{Z} \sqrt{26}$ is not Euclidean with respect to ϕ_{26}.

February 6, 2004

