CHAPTER 2, QUESTION 8

8. Prove a modification of Theorem 2.3.1 which allows one of the primes p and q to be the prime 2 .

Solution. We prove
Theorem. Let m be a positive squarefree integer $\equiv 3(\bmod 4)$. If there exists an odd prime q such that

$$
\left(\frac{m}{p}\right)=-1
$$

and positive integers t and u such that

$$
2 t+q u=m, t \equiv \frac{m-1}{2}(\bmod 4), q \nmid u,
$$

and an integer r such that

$$
r^{2} \equiv 2 t(\bmod m)
$$

then $\mathbb{Z}+\mathbb{Z} \sqrt{m}$ is not Euclidean with respect to ϕ_{m}.
Proof. Suppose that $\mathbb{Z}+\mathbb{Z} \sqrt{m}$ is Euclidean with respect to ϕ_{m}. Then there exist $\gamma, \delta \in \mathbb{Z}+\mathbb{Z} \sqrt{m}$ such that

$$
r \sqrt{m}=m \gamma+\delta, \phi_{m}(\delta)<\phi_{m}(m)
$$

Setting $\gamma=x+y \sqrt{m} \quad(x, y \in \mathbb{Z})$ we obtain

$$
\phi_{m}(r \sqrt{m}-m(x+y \sqrt{m}))<\phi_{m}(m)
$$

that is

$$
\left|m^{2} x^{2}-m(r-m y)^{2}\right|<m^{2}
$$

so that

$$
\left|m x^{2}-(r-m y)^{2}\right|<m .
$$

Since

$$
m x^{2}-(m y-r)^{2} \equiv-r^{2} \equiv-2 t(\bmod m)
$$

and

$$
0<2 t<2 t+q u=m
$$

we must have

$$
m x^{2}-(m y-r)^{2}=-2 t \text { or } m-2 t,
$$

that is

$$
m X^{2}-Y^{2}=-2 t \text { or } q u
$$

for integers $X(=x)$ and $Y(=m y-r)$. Suppose that $m X^{2}-Y^{2}=2 t$. Taking this equation modulo 4 , we obtain

$$
3 X^{2}-Y^{2} \equiv 2(\bmod 4)
$$

Thus $X \equiv Y \equiv 1(\bmod 2)$. Now taking the equation modulo 8 , we have

$$
m-1 \equiv-2 t \equiv-(m-1)(\bmod 8),
$$

so that $m \equiv 1(\bmod 4)$, contradicting $m \equiv 3(\bmod 4)$. Now suppose that $m X^{2}-Y^{2}=q u$. As $\left(\frac{m}{q}\right)=-1$, we have $q \nmid m$. Also as $q \nmid u$ we have $q \| q u$. Hence $q \nmid X$ and $q \nmid Y$. Thus,

$$
\left(\frac{m}{q}\right)=\left(\frac{m X^{2}}{q}\right)=\left(\frac{Y^{2}}{q}\right)=1,
$$

contradicting $\left(\frac{m}{q}\right)=-1$. This proves that $\mathbb{Z}+\mathbb{Z} \sqrt{m}$ is not Euclidean with respect to ϕ_{m}.

It follows from this theorem that $\mathbb{Z}+\mathbb{Z} \sqrt{43}$ is not Euclidean with respect to ϕ_{43} by taking $m=43, q=11, t=5, u=3, r=15$.

June 19, 2004

