CHAPTER 3, QUESTION 11

11. Suppose that D is a unique factorization domain and $a(\neq 0)$ and $b(\neq 0)$ are coprime nonunits in D. Prove that if $a b=c^{n}$ for some $c \in D$ and some $n \in \mathbb{N}$ then there is a unit $e \in D$ such that $e a$ and $e^{-1} b$ are nth powers in D.

Solution. Let $\left\{\pi_{1}, \ldots, \pi_{m}\right\}$ be all the nonassociated irreducibles dividing a or b or c. Then,

$$
\begin{aligned}
a & =\varepsilon \pi_{1}^{\alpha_{1}} \cdots \pi_{m}^{\alpha_{m}}, \\
b & =\eta \pi_{1}^{\beta_{1}} \cdots \pi_{m}^{\beta_{m}}, \\
c & =\delta \pi_{1}^{\gamma_{1}} \cdots \pi_{m}^{\gamma_{m}},
\end{aligned}
$$

where $\varepsilon, \eta, \delta \in U(D)$ and $\alpha_{i}, \beta_{i}, \gamma_{i}$ are nonnegative integers. Then

$$
\varepsilon \eta \pi_{1}^{\alpha_{1}+\beta_{1}} \cdots \pi_{m}^{\alpha_{m}+\beta_{m}}=\delta^{n} \pi^{n \gamma_{1}} \cdots \pi_{m}^{n \gamma_{m}} .
$$

As D is a unique factorization domain, we have

$$
\alpha_{i}+\beta_{i}=n \gamma_{i}, i=1,2, \ldots, m .
$$

As a and b are coprime in D, either $\alpha_{i}=0$ or $\beta_{i}=0$ for each i. Hence $\alpha_{i}=0$ or $\alpha_{i}=n \gamma_{i}$ for each i. Thus α_{i} is a multiple of n for all i, so

$$
a=\varepsilon d^{n}, \text { where } d=\pi_{1}^{\alpha_{1} / n} \cdots \pi_{m}^{\alpha_{m} / n} \in D,
$$

that is

$$
e a=d^{n}, \text { where } e=1 / \varepsilon \in U(D)
$$

Then

$$
e^{-1}=e^{-1} c^{n} / a=\frac{c^{n}}{e a}=\frac{c^{n}}{d^{n}}=\left(\frac{c}{d}\right)^{n} .
$$

Finally

$$
\frac{c}{d}=\frac{\delta \pi_{1}^{\gamma_{1}} \cdots \pi_{m}^{\gamma_{m}}}{\pi_{1}^{\alpha_{1} / n} \cdots \pi_{m}^{\alpha_{m} / n}}=\delta \pi_{1}^{\beta_{1} / n} \cdots \pi_{m}^{\beta_{m} / n} \in D
$$

as each $\beta_{i}=0$ or $n \gamma_{i}$.

June 20, 2004

