CHAPTER 3, QUESTION 14

14. Let p be a prime and m a positive nonsquare integer such that the Legendre symbol $\left(\frac{ \pm p}{q}\right)=-1$ for some odd prime factor q of m. Prove that the equation $x^{2}-m y^{2}= \pm p$ has no solution in integers x and y. Deduce that p is an irreducible element of $\mathbb{Z}+\mathbb{Z} \sqrt{m}$.

Solution. Suppose that x and y are integers such that

$$
x^{2}-m y^{2}= \pm p .
$$

Taking this equation modulo q, we obtain

$$
x^{2} \equiv \pm p(\bmod q)
$$

so that

$$
\left(\frac{ \pm p}{q}\right)=0 \text { or } 1
$$

contradicting

$$
\left(\frac{ \pm p}{q}\right)=-1
$$

Hence the equation $x^{2}-m y^{2}= \pm p$ has no solution in integers x and y.
Suppose that p is not an irreducible element of $\mathbb{Z}+\mathbb{Z} \sqrt{m}$. Then there exist $x, y, u, v \in \mathbb{Z}$ such that

$$
p=(x+y \sqrt{m})(u+v \sqrt{m})
$$

with $x+y \sqrt{m}, u+v \sqrt{m} \notin U(\mathbb{Z}+\mathbb{Z} \sqrt{n})$. Hence

$$
p=(x u+y v m)+(x v+y u) \sqrt{m} .
$$

As m is a positive nonsquare integers, \sqrt{m} is irrational. Thus

$$
p=x u+y v m, \quad x v+y u=0 .
$$

Hence

$$
(x-y \sqrt{m})(u-v \sqrt{m})=(x u+y v m)-(x v+y u) \sqrt{m}=p .
$$

Therefore

$$
p^{2}=\left(x^{2}-m y^{2}\right)\left(u^{2}-m v^{2}\right)
$$

Thus

$$
x^{2}-m y^{2}= \pm 1, \quad \pm p, \quad \pm p^{2} .
$$

The possibility $x^{2}-m y^{2}= \pm 1$ cannot occur as $x+y \sqrt{m} \notin U(\mathbb{Z}+\mathbb{Z} \sqrt{m})$. The possibility $x^{2}-m y^{2}= \pm p$ cannot occur as the equation has no solutions in integers x and y. The possibility $x^{2}-m y^{2}= \pm p^{2}$ cannot occur as $u+v \sqrt{m} \notin$ $U(\mathbb{Z}+\mathbb{Z} \sqrt{m})$.

June 20, 2004

