15. Prove that $\mathbb{Z} + \mathbb{Z}\sqrt{-6}$ is not a unique factorization domain by exhibiting an element of $\mathbb{Z} + \mathbb{Z}\sqrt{-6}$ which has two different factorizations into irreducibles.

Solution. Let $D = \mathbb{Z} + \mathbb{Z}\sqrt{-6}$ so that $U(D) = \{\pm 1\}$. We show that $\sqrt{-6}$ is an irreducible in D. Suppose

$$\sqrt{-6} = (a + b\sqrt{-6})(c + d\sqrt{-6}), \ a, b, c, d \in \mathbb{Z}.$$

Then

$$6 = (a^2 + 6b^2)(c^2 + 6d^2).$$

Hence

$$a^2 + 6b^2 = 1, 2, 3$$
 or 6.

If $a^2 + 6b^2 = 1$ then $a = \pm 1$, b = 0 so $a + b\sqrt{-6} = \pm 1$ is a unit. If $a^2 + 6b^2 = 6$ then $c^2 + 6d^2 = 1$ so $c + d\sqrt{-6}$ is a unit. The possibilities $a^2 + 6b^2 = 2, 3$ cannot occur. Hence $\sqrt{-6}$ is an irreducible.

Similarly we can show that 2 and 3 are irreducible in D. Clearly 2, 3, $\sqrt{-6}$ are not associates of one another. Hence

$$6 = -(\sqrt{-6})^2 = 2 \cdot 3$$

gives two different factorizations of 6 into irreducibles.

June 20, 2004