CHAPTER 3, QUESTION 15

15. Prove that $\mathbb{Z}+\mathbb{Z} \sqrt{-6}$ is not a unique factorization domain by exhibiting an element of $\mathbb{Z}+\mathbb{Z} \sqrt{-6}$ which has two different factorizations into irreducibles.

Solution. Let $D=\mathbb{Z}+\mathbb{Z} \sqrt{-6}$ so that $U(D)=\{ \pm 1\}$. We show that $\sqrt{-6}$ is an irreducible in D. Suppose

$$
\sqrt{-6}=(a+b \sqrt{-6})(c+d \sqrt{-6}), \quad a, b, c, d \in \mathbb{Z}
$$

Then

$$
6=\left(a^{2}+6 b^{2}\right)\left(c^{2}+6 d^{2}\right) .
$$

Hence

$$
a^{2}+6 b^{2}=1,2,3 \text { or } 6 .
$$

If $a^{2}+6 b^{2}=1$ then $a= \pm 1, b=0$ so $a+b \sqrt{-6}= \pm 1$ is a unit. If $a^{2}+6 b^{2}=6$ then $c^{2}+6 d^{2}=1$ so $c+d \sqrt{-6}$ is a unit. The possibilities $a^{2}+6 b^{2}=2,3$ cannot occur. Hence $\sqrt{-6}$ is an irreducible.

Similarly we can show that 2 and 3 are irreducible in D.
Clearly $2,3, \sqrt{-6}$ are not associates of one another.
Hence

$$
6=-(\sqrt{-6})^{2}=2 \cdot 3
$$

gives two different factorizations of 6 into irreducibles.

June 20, 2004

