CHAPTER 3, QUESTION 17

17. Prove that $\mathbb{Z}+\mathbb{Z} \sqrt{15}$ is not a unique factorization domain.

Solution. Let $D=\mathbb{Z}+\mathbb{Z} \sqrt{15}$. We show that $3,5, \sqrt{15}$ are irreducibles in D.
Suppose that

$$
3=(a+b \sqrt{15})(c+d \sqrt{15}), \quad a, b, c, d \in \mathbb{Z}
$$

Then

$$
9=\left(a^{2}-15 b^{2}\right)\left(c^{2}-15 d^{2}\right) .
$$

Hence

$$
a^{2}-15 b^{2}= \pm 1, \pm 3, \pm 9
$$

We show that $a^{2}-15 b^{2} \neq \pm 3$. Suppose $a^{2}-15 b^{2}= \pm 3$. Then $3 \mid a^{2}$ so $3 \mid a$, say $a=3 k$. Then $3 k^{2}-5 b^{2}= \pm 1$. If the plus sign holds, then

$$
1=\left(\frac{1}{5}\right)=\left(\frac{3 k^{2}-5 b^{2}}{5}\right)=\left(\frac{3 k^{2}}{5}\right)=\left(\frac{3}{5}\right)=-1,
$$

a contradiction. If the minus sign holds, then

$$
1=\left(\frac{1}{3}\right)=\left(\frac{5 b^{2}-3 k^{2}}{3}\right)=\left(\frac{5 b^{2}}{3}\right)=\left(\frac{5}{3}\right)=\left(\frac{-1}{3}\right)=-1,
$$

a contradiction. If $a^{2}-15 b^{2}= \pm 1$ then $a+b \sqrt{15} \in U(D)$. If $a^{2}-15 b^{2}= \pm 9$ then $c^{2}-15 d^{2}= \pm 1$ and $c+d \sqrt{15} \in U(D)$. Hence 3 is irreducible in D.

Suppose next that

$$
5=(a+b \sqrt{15})(c+d \sqrt{15})
$$

Then

$$
25=\left(a^{2}-15 b^{2}\right)\left(c^{2}-15 d^{2}\right) .
$$

Hence

$$
a^{2}-15 b^{2}= \pm 1, \pm 5, \pm 25
$$

We show that $a^{2}-15 b^{2} \neq \pm 5$. Suppose $a^{2}-15 b^{2}= \pm 5$. Then $5 \mid a^{2}$ so $5 \mid a$, say $a=5 k$. Then $5 k^{2}-3 b^{2}= \pm 1$. As above this equation cannot
hold. Hence $a^{2}-15 b^{2}= \pm 1$ or ± 25 so that $a+b \sqrt{15}$ or $c+d \sqrt{15}$ is a unit, proving 5 is irreducible in D.

In exactly the same way we can show that $\sqrt{15}$ is irreducible in D.
Finally the factorizations

$$
15=3 \cdot 5=(\sqrt{15})^{2}
$$

show that D is not a unique factorization domain as $3,5, \sqrt{15}$ are nonassociated irreducibles of D.

June 20, 2004

