CHAPTER 3, QUESTION 5

5. Prove that the ideal $<2, X>$ in $\mathbb{Z}[X]$ is not principal (Example 3.3.6).

Solution. Suppose that the ideal $I=<2, X>$ in $\mathbb{Z}[X]$ is principal. Then there exists $f(X) \in \mathbb{Z}[X]$ such that $I=<f(X)>$. As $2 \in I$ there exists $g(X) \in \mathbb{Z}[X]$ such that

$$
2=f(X) g(X)
$$

Hence

$$
\operatorname{deg} f(X)+\operatorname{deg} g(X)=\operatorname{deg} f(X) g(X)=\operatorname{deg} 2=0
$$

so

$$
\operatorname{deg} f(X)=\operatorname{deg} g(X)=0
$$

Thus

$$
f(X)=a, g(X)=b, a, b \in \mathbb{Z}
$$

As

$$
2=a b
$$

we have

$$
a= \pm 1 \text { or } \pm 2 \text {. }
$$

If $a= \pm 1$ then $<2, X>=<1>$. Hence there exist $r(X), s(X) \in \mathbb{Z}[X]$ such that

$$
1=2 r(X)+X s(X) .
$$

Equating constant terms in these polynomials we obtain

$$
1=2 r(0) \text { so that } r(0)=\frac{1}{2},
$$

contradicting $r(0) \in \mathbb{Z}$.
If $a= \pm 2$ then $<2, X>=<2>$. Hence there exists $v(X) \in \mathbb{Z}[X]$ such that

$$
X=2 v(X)
$$

Then $v(X)=\frac{1}{2} X$, contradicting $v(X) \in \mathbb{Z}[X]$. This proves that $\langle 2, X\rangle$ is nonprincipal.

June 20, 2004

