CHAPTER 3, QUESTION 6
6. Prove that a subset $N$ of an $R$-module $M$ is a submodule of $M$ if and only if
(i) $0 \in N$,
(ii) $n_{1}, n_{2} \in N \Longrightarrow n_{1}-n_{2} \in N$,
(iii) $n \in N, r \in R \Longrightarrow r n \in N$.

Solution. Suppose that $N$ is a submodule of $M$. Then $N$ is a subgroup of $M$ such that $r n \in N$ for all $r \in M$ and $n \in N$. This condition is just (iii), and (i), (ii) hold as $N$ is a subgroup of $M$.

Now suppose that $N$ is a subset of the $R$-module $M$ satisfying (i), (ii), (iii). As $M$ is an additive Abelian group and $N$ is a subset of $M$ satisfying (i) and (ii), $N$ is a subgroup of $M$. Thus as $N$ satisfies (iii), $N$ is a submodule of $M$.

June 20, 2004

