EXERCISES 4, QUESTION 1

1. Prove that

$$
\frac{1}{3}\left(1+10^{1 / 3}+10^{2 / 3}\right)
$$

is an algebraic integer.

Solution. Let

$$
\alpha=\frac{1}{3}\left(1+10^{1 / 3}+10^{2 / 3}\right) .
$$

Then

$$
3 \alpha-1=10^{1 / 3}+10^{2 / 3}
$$

Cubing both sides, we obtain

$$
27 \alpha^{3}-27 \alpha^{2}+9 \alpha-1=110+30\left(10^{1 / 3}+10^{2 / 3}\right)=80+90 \alpha,
$$

so that

$$
\alpha^{3}-\alpha^{2}-3 \alpha-3=0 .
$$

As α is the root of a monic polynomial with integer coefficients, α is an algebraic integer.

February 6, 2004

