12. Prove that $\mathbb{Z}+\mathbb{Z} \sqrt{2}+\mathbb{Z} \sqrt{5}+\mathbb{Z} \sqrt{10}$ is not integrally closed in its quotient field. [HINT: Consider $\left(\frac{1+\sqrt{5}}{\sqrt{2}}\right)^{2}$.]
Solution. Let
$D=\mathbb{Z}+\mathbb{Z} \sqrt{2}+\mathbb{Z} \sqrt{5}+\mathbb{Z} \sqrt{10}=\{a+b \sqrt{2}+c \sqrt{5}+d \sqrt{10} \mid a, b, c, d \in \mathbb{Z}\}$.
The field of quotients of D is

$$
K=\mathbb{Q}(\sqrt{2}, \sqrt{5})=\{r+s \sqrt{2}+t \sqrt{5}+u \sqrt{10} \mid r, s, t, u \in \mathbb{Q}\} .
$$

Let

$$
\theta=\left(\frac{1+\sqrt{5}}{\sqrt{2}}\right) .
$$

Clearly

$$
\theta=\frac{\sqrt{2}+\sqrt{10}}{2}
$$

so

$$
\theta \in K, \quad \theta \notin D
$$

Now

$$
\theta^{2}=\left(\frac{1+\sqrt{5}}{\sqrt{2}}\right)^{2}=\frac{6+2 \sqrt{5}}{2}=3+\sqrt{5}
$$

so that θ is integral over $\mathbb{Z}+\mathbb{Z} \sqrt{5}$ and thus over D. Hence D is not integrally closed in its quotients field.

