CHAPTER 4, QUESTION 15

15. Let A and B be integral domains with $A \subseteq B$ and B integral over A. If I is a nonzero ideal of B, prove that $I \cap A$ is a nonzero ideal of A.

Solution. It is easy to check that $I \cap A$ is an ideal of A. We must show that $I \cap A \neq\{0\}$. As $I \neq\{0\}$ there exist $b \in I$ with $b \neq 0$. Since $b \in B$ and B is integral over A, there exist $a_{0}, a_{1}, \ldots, a_{n-1} \in A$ such that

$$
b^{n}+a_{n-1} b^{n-1}+\cdots+a_{1} b+a_{0}=0 .
$$

Choose n to be the least positive integer for which such a relation holds. If $n=1$ then $b+a_{0}=0$ so $b=-a_{0} \in A$. But $b \in I$ so that $b \in I \cap A$. Hence $I \cap A \neq\{0\}$. Thus we may suppose that $n \geq 2$ so that $n-1 \geq 1$. If $a_{0}=0$ then $b^{n-1}+a_{n-1} b^{n-2}+\cdots+a_{1}=0$, contradicting the minimality of n. Hence $a_{0} \neq 0$. Then

$$
a_{0}=b\left(-b^{n-1}-\cdots-a_{1}\right) \in I .
$$

Since $a_{0} \in A$ we have $a_{0} \in I \cap A$. Hence $I \cap A \neq\{0\}$.

June 21, 2004

