EXERCISES 4, QUESTION 2

2. Prove that

$$
\frac{10^{2 / 3}-1}{\sqrt{-3}}
$$

is an algebraic integer.
Solution. Let

$$
\alpha=\frac{10^{2 / 3}-1}{\sqrt{-3}} .
$$

Then

$$
\sqrt{-3} \alpha+1=10^{2 / 3}
$$

Cubing both sides, we obtain

$$
\left(1-9 \alpha^{2}\right)+3 \sqrt{-3}\left(\alpha-\alpha^{3}\right)=100
$$

Hence

$$
\sqrt{-3}\left(\alpha-\alpha^{3}\right)=33+3 \alpha^{2}
$$

Squaring both sides, we have

$$
-3\left(\alpha^{2}-2 \alpha^{4}+\alpha^{6}\right)=1089+198 \alpha^{2}+9 \alpha^{4}
$$

and thus

$$
\alpha^{6}+\alpha^{4}+67 \alpha^{2}+363=0 .
$$

As α is the root of a monic polynomial with integer coefficients, α is an algebraic integer.

February 12, 2004

