6. Let D be a principal ideal domain. Prove that D is integrally closed.

Solution. Let K =field of quotients of D. Let $\gamma \in K$ be integral over D. We must show that $\gamma \in D$. As $\gamma \in K$ we have $\gamma = \alpha/\beta$, where $\alpha \in D$ and $\beta \neq 0 \in D$. As D is a principal ideal domain, $\langle \alpha, \beta \rangle = \langle \delta \rangle$ for some $\delta \in D$. Thus $\alpha = \alpha'\delta$ and $\beta = \beta'\delta$ for some $\alpha', \beta' \in D$. Also $\delta \in \langle \alpha, \beta \rangle$ so $\delta = \theta\alpha + \phi\beta$ for some $\theta, \phi \in D$. Then $\delta = \theta\alpha'\delta + \phi\beta'\delta$. As $\beta \neq 0$ we have $\delta \neq 0$. Hence $1 = \theta\alpha' + \phi\beta'$. Thus $\langle \alpha', \beta' \rangle = \langle 1 \rangle$ and $\gamma = \alpha/\beta = \alpha'\delta/\beta'\delta = \alpha'\beta'$ with $\beta' = \beta/\delta \neq 0$. Relabel α' as α, β' as β , so

$$\gamma = \alpha/\beta, \quad <\alpha, \beta > = <1>, \quad \beta \neq 0, \quad \alpha, \beta \in D.$$

Since γ is integer over D, there exist $a_0, a_1, \ldots, a_{n-1} \in D$ such that

$$\gamma^n + a_{n-1}\gamma^{n-1} + \dots + a_1\gamma + a_0 = 0.$$

Replacing γ by α/β , and multiplying both sides by β^n , we obtain

$$\alpha^n + a_{n-1}\alpha^{n-1}\beta + \dots + a_1\alpha\beta^{n-1} + a_0\beta^n = 0.$$

Hence

$$\beta \mid \alpha^n$$
.

Now $< \alpha, \beta > = < 1 >$ so we have

$$< \alpha, \beta >^n = <1 >^n = <1 >,$$

that is

$$< \alpha^n, \alpha^{n-1}\beta, \dots, \alpha\beta^{n-1}, \beta^n > = <1>.$$

Hence

$$<\beta><\alpha^n/\beta, \alpha^{n-1}, \ldots, \alpha\beta^{n-2}, \beta^{n-1}>=<1>.$$

Thus

$$<\alpha^n/\beta, \alpha^{n-1}, \ldots, \alpha\beta^{n-2}, \beta^{n-1}> = <\beta^{-1}>.$$

As the left hand side is an integral ideal of $D, <\beta^{-1} > \text{must}$ be an integral ideal of D. Thus $\beta^{-1} \in D$ and $\gamma = \alpha\beta^{-1} \in D$. This completes the proof that D is integrally closed.

June 21, 2004