CHAPTER 4, QUESTION 6

6. Let D be a principal ideal domain. Prove that D is integrally closed.

Solution. Let $K=$ field of quotients of D. Let $\gamma \in K$ be integral over D. We must show that $\gamma \in D$. As $\gamma \in K$ we have $\gamma=\alpha / \beta$, where $\alpha \in D$ and $\beta(\neq 0) \in D$. As D is a principal ideal domain, $\langle\alpha, \beta>=<\delta>$ for some $\delta \in D$. Thus $\alpha=\alpha^{\prime} \delta$ and $\beta=\beta^{\prime} \delta$ for some $\alpha^{\prime}, \beta^{\prime} \in D$. Also $\delta \in<\alpha, \beta>$ so $\delta=\theta \alpha+\phi \beta$ for some $\theta, \phi \in D$. Then $\delta=\theta \alpha^{\prime} \delta+\phi \beta^{\prime} \delta$. As $\beta \neq 0$ we have $\delta \neq 0$. Hence $1=\theta \alpha^{\prime}+\phi \beta^{\prime}$. Thus $<\alpha^{\prime}, \beta^{\prime}>=<1>$ and $\gamma=\alpha / \beta=\alpha^{\prime} \delta / \beta^{\prime} \delta=\alpha^{\prime} \beta^{\prime}$ with $\beta^{\prime}=\beta / \delta \neq 0$. Relabel α^{\prime} as α, β^{\prime} as β, so

$$
\gamma=\alpha / \beta, \quad<\alpha, \beta>=<1>, \quad \beta \neq 0, \quad \alpha, \beta \in D
$$

Since γ is integer over D, there exist $a_{0}, a_{1}, \ldots, a_{n-1} \in D$ such that

$$
\gamma^{n}+a_{n-1} \gamma^{n-1}+\cdots+a_{1} \gamma+a_{0}=0
$$

Replacing γ by α / β, and multiplying both sides by β^{n}, we obtain

$$
\alpha^{n}+a_{n-1} \alpha^{n-1} \beta+\cdots+a_{1} \alpha \beta^{n-1}+a_{0} \beta^{n}=0 .
$$

Hence

$$
\beta \mid \alpha^{n} .
$$

Now $\langle\alpha, \beta\rangle=<1\rangle$ so we have

$$
<\alpha, \beta>^{n}=<1>^{n}=<1>
$$

that is

$$
<\alpha^{n}, \alpha^{n-1} \beta, \ldots, \alpha \beta^{n-1}, \beta^{n}>=<1>
$$

Hence

$$
<\beta><\alpha^{n} / \beta, \alpha^{n-1}, \ldots, \alpha \beta^{n-2}, \beta^{n-1}>=<1>
$$

Thus

$$
<\alpha^{n} / \beta, \alpha^{n-1}, \ldots, \alpha \beta^{n-2}, \beta^{n-1}>=<\beta^{-1}>
$$

As the left hand side is an integral ideal of $\left.D,<\beta^{-1}\right\rangle$ must be an integral ideal of D. Thus $\beta^{-1} \in D$ and $\gamma=\alpha \beta^{-1} \in D$. This completes the proof that D is integrally closed.

June 21, 2004

