CHAPTER 4, QUESTION 8

8. Let θ be a root of $x^{3}+6 x+34$. Prove that the domain $\mathbb{Z}+\mathbb{Z} \theta+\mathbb{Z} \theta^{2}$ is not integrally closed. [HINT: Consider $\phi=\frac{1+\theta}{3}$.]

Solution. Let

$$
D=\mathbb{Z}+\mathbb{Z} \theta+\mathbb{Z} \theta^{2}=\left\{a+b \theta+c \theta^{2} \mid a, b, c \in \mathbb{Z}, \theta^{3}+6 \theta+34=0\right\}
$$

The field of quotients of D is

$$
K=\mathbb{Q}(\theta)=\left\{r+s \theta+t \theta^{2} \mid r, s, t \in \mathbb{Q}\right\} .
$$

Clearly

$$
\phi=\frac{1+\theta}{3} \in K, \quad \phi \notin D .
$$

Now

$$
\begin{aligned}
\phi^{3}-\phi^{2}+\phi+1 & =\left(\frac{1+\theta}{3}\right)^{3}-\left(\frac{1+\theta}{3}\right)^{2}+\left(\frac{1+\theta}{3}\right)+1 \\
& =\frac{1}{27}\left(1+3 \theta+3 \theta^{2}+\theta^{3}-3-6 \theta-3 \theta^{2}+9+9 \theta+27\right) \\
& =\frac{1}{27}\left(\theta^{3}+6 \theta+34\right) \\
& =0
\end{aligned}
$$

so that ϕ is integral over D. Hence D is not integrally closed.

June 21, 2004

