CHAPTER 5, QUESTION 10

10. Prove that

$$
[\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}): \mathbb{Q}]=8 .
$$

Solution. We have

$$
\begin{aligned}
& {[\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}): \mathbb{Q}]} \\
& \quad=[\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}): \mathbb{Q}(\sqrt{2}, \sqrt{3})][\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}), \mathbb{Q}] .
\end{aligned}
$$

The minimal polynomial of $\sqrt{2}$ over \mathbb{Q} is $x^{2}-2$ so that $[\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=2$. The minimal polynomial of $\sqrt{3}$ over $\mathbb{Q}(\sqrt{2})$ is $x^{2}-3$ so that $[\mathbb{Q}(\sqrt{2}, \sqrt{3})$: $\mathbb{Q}(\sqrt{2})]=2$. The minimal polynomial of $\sqrt{5}$ over $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is $x^{2}-5$ so that $[\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}): \mathbb{Q}(\sqrt{2}, \sqrt{3})]=2$. Hence

$$
[\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}): \mathbb{Q}]=2 \cdot 2 \cdot 2=2^{3}=8
$$

To check that $x^{2}-3$ is the minimal polynomial of $\sqrt{3}$ over $\mathbb{Q}(\sqrt{2})$ we have only to check that it is irreducible in $\mathbb{Q}(\sqrt{2})[x]$, that is there do not exist $a, b \in \mathbb{Q}$ such that

$$
(a+b \sqrt{2})^{2}-3=0
$$

This is clear as this equation gives the equations

$$
a^{2}+2 b^{2}=3, \quad a b=0,
$$

which have no rational solutions.
similarly we can check that $x^{2}-5$ is the minimal polynomial of $\sqrt{5}$ over $\mathbb{Q}(\sqrt{2}, \sqrt{5})$

June 22, 2004

