12. Let $\theta \in \mathbb{C}$ be a root of $x^3 + 11x + 4 = 0$. Prove that $[\mathbb{Q}(\theta) : \mathbb{Q}] = 3$.

Solution. Let $f(x) = x^3 + 11x + 4 \in \mathbb{Z}[x]$. The only possible linear factors of f(x) in $\mathbb{Z}[x]$ are x - a, where $a \mid 4$. However, none of these is a factor as

$$\begin{aligned} f(-4) &= (-4)^3 + 11(-4) + 4 = -64 - 44 + 4 = -104 \neq 0, \\ f(-2) &= (-2)^3 + 11(-2) + 4 = -8 - 22 + 4 = -26 \neq 0, \\ f(-1) &= (-1)^3 + 11(-1) + 4 = -1 - 11 + 4 = -8 \neq 0, \\ f(1) &= 1^3 + 11(1) + 4 = 1 + 11 + 4 = 16 \neq 0, \\ f(2) &= 2^3 + 11(2) + 4 = 8 + 22 + 4 = 34 \neq 0, \\ f(4) &= 4^3 + 11(4) + 4 = 64 + 44 + 4 = 112 \neq 0. \end{aligned}$$

Hence f(x) is irreducible in $\mathbb{Z}[x]$. Thus the minimal polynomial of θ over \mathbb{Q} is f(x), so that $[\mathbb{Q}(\theta) : \mathbb{Q}] = \deg f(x) = 3$.

June 22, 2004