CHAPTER 5, QUESTION 12

12. Let $\theta \in \mathbb{C}$ be a root of $x^{3}+11 x+4=0$. Prove that $[\mathbb{Q}(\theta): \mathbb{Q}]=3$.

Solution. Let $f(x)=x^{3}+11 x+4 \in \mathbb{Z}[x]$. The only possible linear factors of $f(x)$ in $\mathbb{Z}[x]$ are $x-a$, where $a \mid 4$. However, none of these is a factor as

$$
\begin{aligned}
f(-4) & =(-4)^{3}+11(-4)+4=-64-44+4=-104 \neq 0, \\
f(-2) & =(-2)^{3}+11(-2)+4=-8-22+4=-26 \neq 0, \\
f(-1) & =(-1)^{3}+11(-1)+4=-1-11+4=-8 \neq 0, \\
f(1) & =1^{3}+11(1)+4=1+11+4=16 \neq 0, \\
f(2) & =2^{3}+11(2)+4=8+22+4=34 \neq 0, \\
f(4) & =4^{3}+11(4)+4=64+44+4=112 \neq 0 .
\end{aligned}
$$

Hence $f(x)$ is irreducible in $\mathbb{Z}[x]$. Thus the minimal polynomial of θ over \mathbb{Q} is $f(x)$, so that $[\mathbb{Q}(\theta): \mathbb{Q}]=\operatorname{deg} f(x)=3$.

June 22, 2004

