14. Let $\theta \in \mathbb{C}$ be a root of $x^5 + x + 1 = 0$. If $\theta \notin \mathbb{Q}(\sqrt{-3})$, what is $\operatorname{irr}_{\mathbb{Q}}\theta$?

Solution. As

$$x^{5} + x + 1 = (x^{2} + x + 1)(x^{3} - x^{2} + 1),$$

 θ is a root of $x^2 + x + 1$ or $x^3 - x^2 + 1$. In the former case $\theta = \frac{-1 \pm \sqrt{-3}}{2} \in \mathbb{Q}(\sqrt{-3})$, contradicting $\theta \notin \mathbb{Q}(\sqrt{-3})$. Hence θ is a root of $x^3 - x^2 + 1$. As $(\pm 1)^3 - (\pm 1)^2 + 1 \neq 0$, $x^3 - x^2 + 1$ has no linear factors in $\mathbb{Z}[x]$, and thus irreducible in $\mathbb{Z}[x]$. This proves that $\operatorname{irr}_{\mathbb{Q}}\theta = x^3 - x^2 + 1$.

June 22, 2004