14. Let $\theta \in \mathbb{C}$ be a root of $x^{5}+x+1=0$. If $\theta \notin \mathbb{Q}(\sqrt{-3})$, what is $\operatorname{irr}_{\mathbb{Q}} \theta$?

Solution. As

$$
x^{5}+x+1=\left(x^{2}+x+1\right)\left(x^{3}-x^{2}+1\right),
$$

θ is a root of $x^{2}+x+1$ or $x^{3}-x^{2}+1$. In the former case $\theta=\frac{-1 \pm \sqrt{-3}}{2} \epsilon$ $\mathbb{Q}(\sqrt{-3})$, contradicting $\theta \notin \mathbb{Q}(\sqrt{-3})$. Hence θ is a root of $x^{3}-x^{2}+1$. As $(\pm 1)^{3}-(\pm 1)^{2}+1 \neq 0, x^{3}-x^{2}+1$ has no linear factors in $\mathbb{Z}[x]$, and thus irreducible in $\mathbb{Z}[x]$. This proves that $\operatorname{irr}_{\mathbb{Q}} \theta=x^{3}-x^{2}+1$.

June 22, 2004

