CHAPTER 5, QUESTION 15

15.Let $\omega=e^{2 \pi i / 5}$. Prove that

$$
\omega=\frac{1}{4}(\sqrt{5}-1+i \sqrt{10+2 \sqrt{5}}) .
$$

Solution. Let $\omega=e^{2 \pi i / 5}$ so that $\omega^{5}=e^{2 \pi i}=1$. As $\omega \neq 1$ we have

$$
\omega^{4}+\omega^{3}+\omega^{2}+\omega+1=\frac{\omega^{5}-1}{\omega-1}=0
$$

Hence

$$
\left(\omega^{2}+\frac{1}{2} \omega+1\right)^{2}-\frac{5}{4} \omega^{2}=0,
$$

so that

$$
\omega^{2}+\left(\frac{1+\varepsilon \sqrt{5}}{2}\right) \omega+1=0, \quad \varepsilon= \pm 1
$$

Solving the quadratic equation, we obtain

$$
\omega=\frac{1}{2}\left(-\left(\frac{1+\varepsilon \sqrt{5}}{2}\right)+\delta \sqrt{\left(\frac{1+\varepsilon \sqrt{5}}{2}\right)^{2}-4}\right), \quad \delta= \pm 1
$$

that is

$$
\omega=\left(\frac{-1-\varepsilon \sqrt{5}}{4}\right)+i\left(\frac{\delta \sqrt{10-2 \varepsilon \sqrt{5}}}{4}\right) .
$$

Hence

$$
\frac{-1-\varepsilon \sqrt{5}}{4}=\cos \frac{2 \pi}{5}>0
$$

so that $\varepsilon=-1$. Then

$$
\frac{\delta \sqrt{10+2 \sqrt{5}}}{4}=\sin \frac{2 \pi}{5}>0
$$

so that $\delta=1$. Thus

$$
\omega=\left(\frac{\sqrt{5}-1}{4}\right)+i\left(\frac{\sqrt{10+2 \sqrt{5}}}{4}\right) .
$$

June 22, 2004

