CHAPTER 5, QUESTION 19

19. Let m be a squarefree integer $\equiv 1(\bmod 4)$. Let $A=\mathbb{Z}+\mathbb{Z} \sqrt{m}$ and $B=\mathbb{Q}(\sqrt{m})$. Prove that

$$
A^{B}=\mathbb{Z}+\mathbb{Z}\left(\frac{1+\sqrt{m}}{2}\right)
$$

Solution. Let $\alpha \in \mathbb{Z}+\mathbb{Z}\left(\frac{1+\sqrt{m}}{2}\right)$. Then $\alpha=r+s\left(\frac{1+\sqrt{m}}{2}\right)$ for some $r, s \in \mathbb{Z}$. Clearly $\alpha \in B$. As α is a root of the monic polynomial

$$
x^{2}-(2 r+s) x+\left(r^{2}+r s+\left(\frac{1-m}{4} s^{2}\right)\right) \in A[x]
$$

α is integral over A and thus belongs to A^{B}. Hence $\mathbb{Z}+\mathbb{Z}\left(\frac{1+\sqrt{m}}{2}\right) \subseteq A^{B}$.
We now show that $A^{B} \subseteq \mathbb{Z}+\mathbb{Z}\left(\frac{1+\sqrt{m}}{2}\right)$. Let $\alpha \in A^{B}$. Clearly $\alpha \in B$ so that $\alpha=a+b \sqrt{m}$ for some $a, b \in \mathbb{Q}$. Thus α is a root of the monic polynomial

$$
x^{2}-2 a x+\left(a^{2}-m b^{2}\right) \in \mathbb{Q}[x] .
$$

The discriminant of this polynomial is

$$
(2 a)^{2}-4\left(a^{2}-m b^{2}\right)=4 m b^{2} .
$$

As m is squarefree, the polynomial is reducible in $\mathbb{Q}[x]$ if $b=0$ and irreducible in $\mathbb{Q}[x]$ if $b \neq 0$. Hence

$$
\operatorname{irr}_{\mathbb{Q}}(\alpha)= \begin{cases}x-a & , \text { if } b=0, \\ x^{2}-2 a x+\left(a^{2}-m b^{2}\right) & , \text { if } b \neq 0 .\end{cases}
$$

As $\alpha \in A^{B}, \alpha$ is integral over A and thus is a root of a monic polynomial

$$
x^{n}+\alpha_{1} x^{n-1}+\cdots+\alpha_{n} \in A[x] .
$$

For $j=1,2, \ldots, n$ we have $\alpha_{j} \in A$ so that $\alpha_{j}=a_{j}+b_{j} \sqrt{m}$ for some $a_{j}, b_{j} \in \mathbb{Z}$. Now

$$
\alpha^{n}+\left(a_{1}+b_{1} \sqrt{m}\right) \alpha^{n-1}+\cdots+\left(a_{n}+b_{n} \sqrt{m}\right)=0
$$

so that

$$
\left(\alpha^{n}+a_{1} \alpha^{n-1}+\cdots+a_{n}\right)+\sqrt{m}\left(b_{1} \alpha^{n-1}+\cdots+b_{n}\right)=0
$$

and thus

$$
\left(\alpha^{n}+a_{1} \alpha^{n-1}+\cdots+a_{n}\right)^{2}-m\left(b_{1} \alpha^{n-1}+\cdots+b_{n}\right)^{2}=0 .
$$

Thus α is a root of the monic polynomial

$$
\left(x^{n}+a_{1} x^{n-1}+\cdots+a_{n}\right)^{2}-m\left(b_{1} x^{n-1}+\cdots+b_{n}\right)^{2} \in \mathbb{Z}[x] .
$$

Hence α is an algebraic integer and so, by Theorem 5.1.2, $\operatorname{irr}_{\mathbb{Q}}(\alpha) \in \mathbb{Z}[x]$, that is

$$
\begin{cases}a \in \mathbb{Z} & , \text { if } b=0 \\ 2 a, a^{2}-m b^{2} & , \text { if } b \neq 0\end{cases}
$$

In the former case $\alpha=a+b \sqrt{m}=a=a+0\left(\frac{1+\sqrt{m}}{2}\right) \in \mathbb{Z}+\mathbb{Z}\left(\frac{1+\sqrt{m}}{2}\right)$. In the latter case we have $a=r / 2$ for some $r \in \mathbb{Z}$. If $r \in 2 \mathbb{Z}$ then $a \in \mathbb{Z}$ and $m b^{2} \in \mathbb{Z}$. As $b \neq 0$ and m is square free, we deduce that $b \in \mathbb{Z}$. Thus

$$
\alpha=a+b \sqrt{m} \in \mathbb{Z}+\mathbb{Z} \sqrt{m} \subset \mathbb{Z}+\mathbb{Z}\left(\frac{1+\sqrt{m}}{2}\right) .
$$

If $r \in 2 \mathbb{Z}+1$ then $2 a \in 2 \mathbb{Z}+1$ so $m(2 b)^{2}=(2 a)^{2}-4\left(a^{2}-m b^{2}\right) \in \mathbb{Z}$.

June 23, 2004

