EXERCISES 5, QUESTION 2

2. Prove that $x^{4}+1$ is irreducible in $\mathbb{Q}[x]$, see Example 5.1.1.

Solution. Let $f(x)=x^{4}+1$. As $f(\pm 1)=2 \neq 0, \pm 1$ are not roots of $f(x)$. Thus $f(x)$ has no linear factors in $\mathbb{Z}[x]$. Suppose $f(x)$ has quadratic factors in $\mathbb{Z}[x]$, say,

$$
f(x)=\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right), a, b, c, d \in \mathbb{Z}
$$

Then

$$
\begin{array}{r}
a+c=0, \\
a c+b+d=0, \\
a d+b c=0, \\
b d=1 . \tag{4}
\end{array}
$$

From (4) we deduce that

$$
b=d=\epsilon, \epsilon= \pm 1 .
$$

Then, from (1) and (2), we obtain

$$
a^{2}=-a c=b+d=2 \epsilon,
$$

which is impossible. Thus $f(x)$ is irreducible in $\mathbb{Z}[x]$. As $f(x) \in \mathbb{Z}[x]$ it is therefore irreducible in $\mathbb{Q}[x]$.

February 6, 2004

