20. Let θ be a nonreal algebraic number. Prove that the complex conjugate $\bar{\theta}$ of θ is one of the conjugates of θ over \mathbb{Q}.
Solution. The minimalpolynomial of θ over \mathbb{Q} is

$$
\operatorname{irr}_{\mathbb{Q}}(\alpha)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in \mathbb{Q}[x] .
$$

Thus,

$$
\theta^{n}+a_{n-1} \theta^{n-1}+\cdots+a_{1} \theta+a_{0}=0 .
$$

For $z \in \mathbb{C}$ we denote the complex conjugate of z by \bar{z}. As $a_{0}, \ldots, a_{n-1} \in \mathbb{Q} \subset$ \mathbb{R} we have

$$
\overline{a_{0}}=a_{0}, \cdots, \overline{a_{n-1}}=a_{n-1} .
$$

Also

$$
\overline{\theta^{k}}=\bar{\theta}^{k}, \quad k=1,2, \ldots, n .
$$

Hence

$$
\begin{aligned}
0=\overline{0} & =\overline{\theta^{n}+a_{n-1} \theta^{n-1}+\cdots+a_{1} \theta+a_{0}} \\
& =\overline{\theta^{n}}+\overline{a_{n-1}} \overline{\theta^{n-1}}+\cdots+\overline{a_{1}} \bar{\theta}+\overline{a_{0}} \\
& =\bar{\theta}^{n}+\overline{a_{n-1}} \bar{\theta}^{n-1}+\cdots+\overline{a_{1}} \bar{\theta}+\overline{a_{0}} .
\end{aligned}
$$

Thus $\bar{\theta}$ is a root of $\operatorname{irr}_{\mathbb{Q}}(\alpha)$ and so $\bar{\theta}$ is one of the conjugates of θ over \mathbb{Q}.

June 23, 2004

