CHAPTER 5, QUESTION 21

21. Let p be an odd prime. Let a and c be integers with

$$
a \equiv 1(\bmod 2), \quad\left(\frac{a^{2}-4 c}{p}\right)=-1 .
$$

Prove that

$$
x^{4}+a x^{2}+p x+c
$$

is irreducible in $\mathbb{Z}[x]$.
Solution. Suppose that $x^{4}+a x^{2}+p x+c$ has a linear factor in $\mathbb{Z}[x]$. Then there exists $e \in \mathbb{Z}$ such that

$$
e^{4}+a e^{2}+p e+c=0
$$

Hence

$$
e^{4}+a e^{2}+c \equiv 0(\bmod p) .
$$

Thus

$$
\left(2 e^{2}+a\right)^{2}=4 e^{4}+4 a e^{2}+a^{2} \equiv a^{2}-4 c(\bmod p)
$$

so that

$$
\left(\frac{a^{2}-4 c}{p}\right)=0 \text { or } 1,
$$

contradicting $\left(\frac{a^{2}-4 c}{p}\right)=-1$. Hence $x^{4}+a x^{2}+p x+c$ has no linear factors in $\mathbb{Z}[x]$.

Next suppose that $x^{4}+a x^{2}+p x+c$ has a quadratic factor in $\mathbb{Z}[x]$. Then there exist $A, B, C, D \in \mathbb{Z}$ such that

$$
x^{4}+a x^{2}+p x+c=\left(x^{2}+A x+B\right)\left(x^{2}+C x+D\right) .
$$

Equating coefficients we obtain

$$
\begin{align*}
A+C & =0, \tag{1}\\
A C+B+D & =a, \tag{2}\\
A D+B C & =p, \tag{3}\\
B D & =c . \tag{4}
\end{align*}
$$

From (1) we have $C=-A$. Then (2) and (3) give $A \mid p$ and

$$
\begin{aligned}
& B+D=a+A^{2} \\
& D-B=p / A
\end{aligned}
$$

Hence

$$
\begin{aligned}
& 2 B=a+A^{2}-\frac{p}{A} \\
& 2 D=a+A^{2}+\frac{p}{A} .
\end{aligned}
$$

As $A \mid p$ and p is ann odd prime, we have $A \in\{ \pm 1, \pm p\}$ so that A is odd. Thus, as a is odd, we see that $a+A^{2} \pm \frac{p}{A}$ is odd, a contradiction.

This completes the proof that $x^{4}+a x^{2}+p x+c$ is irreducible in $\mathbb{Z}[x]$.

June 23, 2004

