CHAPTER 5, QUESTION 22
22. Use Question 21 to prove that $[\mathbb{Q}(\theta): \mathbb{Q}]=4$, where θ is a root of $x^{4}+7 x^{2}+5 x+1=0$.

Solution. In the notation of Question 21 we have $p=5, a=7, c=4$. As

$$
\left(\frac{a^{2}-4 c}{p}\right)=\left(\frac{49-16}{5}\right)=\left(\frac{33}{5}\right)=\left(\frac{3}{5}\right)=-1,
$$

$x^{4}+7 x^{2}+5 x+4$ is irreducible by Question 21. Let θ be a root of $x^{4}+7 x^{2}+5 x+4$ so that $\operatorname{irr}_{\mathbb{Q}} \theta=x^{4}+7 x^{2}+5 x+4$. Hence

$$
[\mathbb{Q}(\theta): \mathbb{Q}]=\operatorname{deg}\left(\operatorname{irr}_{\mathbb{Q}} \theta\right)=4 .
$$

June 23, 2004

