EXERCISES 5, QUESTION 3

2. Prove that $x^{2}-\sqrt{2} x+1$ is irreducible in $\mathbb{Q}(\sqrt{2})[x]$, see Example 5.1.2.

Solution. Suppose that $x^{2}-\sqrt{2} x+1$ is reducible in $\mathbb{Q}(\sqrt{2})[x]$. Then $x^{2}-$ $\sqrt{2} x+1$ has a root in $\mathbb{Q}(\sqrt{2})$, that is, there exists $a+b \sqrt{2} \in \mathbb{Q}(\sqrt{2})$ such that

$$
(a+b \sqrt{2})^{2}-\sqrt{2}(a+b \sqrt{2})+1=0
$$

Hence

$$
\left(a^{2}+2 b^{2}-2 b+1\right)+(2 a b-a) \sqrt{2}=0 .
$$

As $\sqrt{2}$ is irrational we have

$$
\begin{gather*}
a^{2}+2 b^{2}-2 b+1=0, \tag{1}\\
2 a b-a=0 . \tag{2}
\end{gather*}
$$

From (2) we deduce that $a=0$ or $b=1 / 2$. If $a=0$ then from (1) we obtain $2 b^{2}-2 b+1=0$, which has no real roots, contradicting $b \in \mathbb{Q}$. If $b=1 / 2$ Then (1) gives $a^{2}+\frac{1}{2}=0$, which has no real roots, contradicting $a \in \mathbb{Q}$. Hence $x^{2}-\sqrt{2} x+1$ is irreducible in $\mathbb{Q}(\sqrt{2})[x]$.

June 21, 2004

