CHAPTER 5, QUESTION 4

4. Determine

$$
\operatorname{irr}_{\mathbb{Q}(i)}\left(\frac{1+i}{\sqrt{2}}\right)
$$

and

$$
\operatorname{irr}_{\mathbb{Q}(\sqrt{-2})}\left(\frac{1+i}{\sqrt{2}}\right) .
$$

Solution. Let $\alpha=\frac{1+i}{\sqrt{2}}$. α is a root of $x^{2}-i \in \mathbb{Q}(i)[x]$. Clearly $x^{2}-i$ is irreducible in $\mathbb{Q}(i)[x]$ as the two roots $x= \pm \frac{1+i}{\sqrt{2}}$ of $x^{2}-i=0$ do not belong in $\mathbb{Q}(i)$ (as $\sqrt{2} \notin \mathbb{Q}(i))$. Hence

$$
\operatorname{irr}_{\mathbb{Q}(i)}\left(\frac{1+i}{\sqrt{2}}\right)=x^{2}-i .
$$

α is also a root of $x^{2}-\sqrt{-2} x-1 \in \mathbb{Q}(\sqrt{-2})[x]$. The two roots $x=\frac{\sqrt{-2} \pm \sqrt{2}}{2}$ of $x^{2}-\sqrt{-2} x-1=0$ do not belong in $\mathbb{Q}(\sqrt{-2})$ (as $\sqrt{2} \notin \mathbb{Q}(\sqrt{-2})$) so that $x^{2}-\sqrt{-2} x-1$ is irreducible in $\mathbb{Q}(\sqrt{-2})[x]$. Hence

$$
\operatorname{irr}_{\mathbb{Q}(\sqrt{-2})}\left(\frac{1+i}{\sqrt{2}}\right)=x^{2}-\sqrt{-2} x-1
$$

June 21, 2004

