CHAPTER 5, QUESTION 5

5. Prove that $[\mathbb{Q}(\sqrt{3}+\sqrt[3]{2}): \mathbb{Q}]=6$, see Example 5.6.2.

Solution. We begin by proving the following result.
Theorem. If K and L are subfields of \mathbb{C} with $K \subseteq L$, and $\alpha \in \mathbb{C}$ is algebraic over K, then

$$
\operatorname{irr}_{L}(\alpha) \mid \operatorname{irr}_{K}(\alpha) \text { in } L[x] .
$$

Proof. As $\alpha \in \mathbb{C}$ is algebraic over K, and $K \subseteq L \subseteq \mathbb{C}, \alpha$ is algebraic over L. The minimal polynomial of α over K is $k(x)=\operatorname{irr}_{K}(\alpha) \in K[x]$ and the minimal polynomial of α over L is $l(x)=\operatorname{irr}_{L}(\alpha) \in L[x]$. As $K \subseteq L$ we have $k(x) \in L[x]$. As L is a field, $L[x]$ is a unique factorization domain. Thus there exist monic irreducible polynomials $k_{1}(x), \ldots, k_{r}(x) \in L[x]$ such that

$$
k(x)=k_{1}(x) \cdots k_{r}(x) .
$$

As $k(\alpha)=0$ we have $k_{1}(\alpha) \cdots k_{r}(\alpha)=0$ so that $k_{j}(\alpha)=0$ for some $j \in$ $\{1,2, \ldots, r\}$. Hence

$$
k_{j}(x) \in I_{L}(\alpha)=<l(x)>
$$

so that

$$
l(x) \mid k_{j}(x) \text { in } L[x] .
$$

As $l(x)$ and $k_{j}(x)$ are both monic and irreducible, we have

$$
l(x)=k_{j}(x)
$$

Thus

$$
l(x) \mid k(x) \text { in } L[x] .
$$

Now

$$
\operatorname{irr}_{\mathbb{Q}}(\sqrt[3]{2})=x^{3}-2
$$

so that by the theorem

$$
\operatorname{irr}_{\mathbb{Q}(\sqrt{3})}(\sqrt[3]{2}) \mid x^{3}-2 \text { in } \mathbb{Q}(\sqrt{3})[x] .
$$

But

$$
x^{3}-2=(x-\sqrt[3]{2})(x-\omega \sqrt[3]{2})\left(x-\omega^{2} \sqrt[3]{2}\right)
$$

where $\omega=(-1+\sqrt{-3}) / 2$, and $\sqrt[3]{2}, \omega \sqrt[3]{2}, \omega^{2} \sqrt[3]{2} \notin \mathbb{Q}(\sqrt{3})$, so that

$$
\operatorname{irr}_{\mathbb{Q}(\sqrt{3})}(\sqrt[3]{2})=x^{3}-2
$$

Thus,

$$
\left[\mathbb{Q}(\sqrt{3}, \sqrt[3]{2}: \mathbb{Q}(\sqrt{3})]=\operatorname{deg}\left(x^{3}-2\right)=3 .\right.
$$

Also

$$
\operatorname{irr}_{\mathbb{Q}}(\sqrt{3})=x^{2}-3
$$

so that

$$
[\mathbb{Q}(\sqrt{3}): \mathbb{Q}]=\operatorname{deg}\left(x^{2}-3\right)=2 .
$$

Thus

$$
[\mathbb{Q}(\sqrt{3}, \sqrt[3]{2}): \mathbb{Q}]=[\mathbb{Q}(\sqrt{3}, \sqrt[3]{2}): \mathbb{Q}(\sqrt{3})][\mathbb{Q}(\sqrt{3}): \mathbb{Q}]=3 \cdot 2=6 .
$$

By Example 5.6.2

$$
\mathbb{Q}(\sqrt{3}, \sqrt[3]{2})=\mathbb{Q}(\sqrt{3}+\sqrt[3]{2})
$$

Hence

$$
[\mathbb{Q}(\sqrt{3}+\sqrt[3]{2}): \mathbb{Q}]=6
$$

June 21, 2004

