CHAPTER 5, QUESTION 8

8. Find the minimal polynomial of $2^{1 / 3}+\omega$ over $\mathbb{Q}\left(2^{1 / 3}\right)$, where ω is a complex cube root of unity.

Solution. Let $\alpha=2^{1 / 3}+\omega$. Then $\omega=\alpha-2^{1 / 3}$. As $\omega^{2}+\omega+1=0$, we have

$$
\left(\alpha-2^{1 / 3}\right)^{2}+\left(\alpha-2^{1 / 3}\right)+1=0 .
$$

Thus α is a root of

$$
f(x)=x^{2}+\left(1-2^{4 / 3}\right) x+\left(1-2^{1 / 3}+2^{2 / 3}\right) \in \mathbb{Q}\left(2^{1 / 3}\right)[x] .
$$

The other root of $f(x)$ is clearly $2^{1 / 3}+\omega^{2}$. As

$$
2^{1 / 3}+\omega \in \mathbb{C} \mathbb{R}, \quad 2^{1 / 3}+\omega^{2} \in \mathbb{C} \backslash \mathbb{R}
$$

$f(x)$ cannot have roots in $\mathbb{Q}\left(2^{1 / 3}\right) \subset \mathbb{R}$. Thus $f(x)$ is irreducible in $\mathbb{Q}\left(2^{1 / 3}\right)[x]$. Hence $f(x)$ is the minimal polynomial of $2^{1 / 3}+\omega$ over $\mathbb{Q}\left(2^{1 / 3}\right)$.

June 22, 2004

