CHAPTER 5, QUESTION 9

9. Determine $\alpha \in \mathbb{C}$ such that

$$
\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})=\mathbb{Q}(\alpha) .
$$

Solution. We have already seen in Example 5.6.1 that

$$
\mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3}) .
$$

Hence

$$
\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})=\mathbb{Q}(\sqrt{2}+\sqrt{3}, \sqrt{5}) .
$$

The conjugates of $\sqrt{2}+\sqrt{3}$ over \mathbb{Q} are $\sqrt{2}+\sqrt{3}, \sqrt{2}-\sqrt{3},-\sqrt{2}+\sqrt{3}$ and $-\sqrt{2}-\sqrt{3}$. The conjugates of $\sqrt{5}$ over \mathbb{Q} are $\sqrt{5}$ and $-\sqrt{5}$. The eight numbers

$$
\begin{array}{llll}
(\sqrt{2}+\sqrt{3})+\sqrt{5}, & (\sqrt{2}-\sqrt{3})+\sqrt{5}, & (-\sqrt{2}+\sqrt{3})+\sqrt{5}, & (-\sqrt{2}-\sqrt{3})+\sqrt{5}, \\
(\sqrt{2}+\sqrt{3})-\sqrt{5}, & (\sqrt{2}-\sqrt{3})-\sqrt{5}, & (-\sqrt{2}+\sqrt{3})-\sqrt{5}, & (-\sqrt{2}-\sqrt{3})-\sqrt{5},
\end{array}
$$

are all distinct. Hence, by the comments following the proof of Theorem 5.6.2, we have

$$
\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})=\mathbb{Q}(\sqrt{2}+\sqrt{3}+\sqrt{5}) .
$$

June 22, 2004

