13. Let m be a squarefree integer $\equiv 3 \pmod{4}$. Prove that

$$< 2, 1 + \sqrt{m} >= 2\mathbb{Z} + (1 + \sqrt{m})\mathbb{Z}.$$

Solution. Let $\alpha \in 2\mathbb{Z} + (1 + \sqrt{m})\mathbb{Z}$. Then there exist $x \in \mathbb{Z}$ and $y \in \mathbb{Z}$ such that $\alpha = 2x + (1 + \sqrt{m})y$. Hence $\alpha \in <2, 1 + \sqrt{m} >$. Thus

$$2\mathbb{Z} + (1 + \sqrt{m})\mathbb{Z} \subseteq <2, 1 + \sqrt{m} > .$$

Now let $\beta \in \langle 2, 1 + \sqrt{m} \rangle$. Then there exist $\theta \in \mathbb{Z} + \mathbb{Z}\sqrt{m}$ and $\phi \in \mathbb{Z} + \mathbb{Z}\sqrt{m}$ such that $\beta = 2\theta + (1 + \sqrt{m})\phi$. As $\theta \in \mathbb{Z} + \mathbb{Z}\sqrt{m}$ there exist $r \in \mathbb{Z}$ and $s \in \mathbb{Z}$ such that $\theta = r + s\sqrt{m}$. Similarly there exist $t \in \mathbb{Z}$ and $u \in \mathbb{Z}$ such that $\phi = t + u\sqrt{m}$. Then

$$\begin{split} \beta &= 2(r + s\sqrt{m}) + (1 + \sqrt{m})(t + u\sqrt{m}) \\ &= (2r + t + mu) + (2s + t + u)\sqrt{m} \\ &= (2r - 2s + (m - 1)u) + (2s + t + u)(1 + \sqrt{m}) \\ &= 2(r - s + (\frac{m - 1}{2})u) + (2s + t + u)(1 + \sqrt{m}) \\ &\in 2\mathbb{Z} + (1 + \sqrt{m})\mathbb{Z}. \end{split}$$

Hence

$$<1,1+\sqrt{m}>\subseteq 2\mathbb{Z}+(1+\sqrt{m})\mathbb{Z}.$$

The two inclusions show that

$$<2,1+\sqrt{m}>=2\mathbb{Z}+(1+\sqrt{m})\mathbb{Z}.$$

February 25, 2004