13. Let m be a squarefree integer $\equiv 3(\bmod 4)$. Prove that

$$
<2,1+\sqrt{m}>=2 \mathbb{Z}+(1+\sqrt{m}) \mathbb{Z}
$$

Solution. Let $\alpha \in 2 \mathbb{Z}+(1+\sqrt{m}) \mathbb{Z}$. Then there exist $x \in \mathbb{Z}$ and $y \in \mathbb{Z}$ such that $\alpha=2 x+(1+\sqrt{m}) y$. Hence $\alpha \in<2,1+\sqrt{m}>$. Thus

$$
2 \mathbb{Z}+(1+\sqrt{m}) \mathbb{Z} \subseteq<2,1+\sqrt{m}>
$$

Now let $\beta \in<2,1+\sqrt{m}>$. Then there exist $\theta \in \mathbb{Z}+\mathbb{Z} \sqrt{m}$ and $\phi \in$ $\mathbb{Z}+\mathbb{Z} \sqrt{m}$ such that $\beta=2 \theta+(1+\sqrt{m}) \phi$. As $\theta \in \mathbb{Z}+\mathbb{Z} \sqrt{m}$ there exist $r \in \mathbb{Z}$ and $s \in \mathbb{Z}$ such that $\theta=r+s \sqrt{m}$. Similarly there exist $t \in \mathbb{Z}$ and $u \in \mathbb{Z}$ such that $\phi=t+u \sqrt{m}$. Then

$$
\begin{aligned}
\beta & =2(r+s \sqrt{m})+(1+\sqrt{m})(t+u \sqrt{m}) \\
& =(2 r+t+m u)+(2 s+t+u) \sqrt{m} \\
& =(2 r-2 s+(m-1) u)+(2 s+t+u)(1+\sqrt{m}) \\
& =2\left(r-s+\left(\frac{m-1}{2}\right) u\right)+(2 s+t+u)(1+\sqrt{m}) \\
& \in 2 \mathbb{Z}+(1+\sqrt{m}) \mathbb{Z} .
\end{aligned}
$$

Hence

$$
<1,1+\sqrt{m}>\subseteq 2 \mathbb{Z}+(1+\sqrt{m}) \mathbb{Z}
$$

The two inclusions show that

$$
<2,1+\sqrt{m}>=2 \mathbb{Z}+(1+\sqrt{m}) \mathbb{Z} .
$$

February 25, 2004

