15. Prove that the discriminant D of the cubic polynomial $x^{3}+a x^{2}+b x+c \in$ $\mathbb{Z}[x]$ is

$$
D=a^{2} b^{2}-4 b^{3}-4 a^{3} c-27 c^{2}+18 a b c
$$

Deduce that $D \equiv 0$ or $1(\bmod 4)$.
Solution. Let $x_{1}, x_{2}, x_{3} \in \mathbb{C}$ be the three roots of $x^{3}+a x^{2}+b x+c$ so that

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}=-a \\
x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}=b, \\
x_{1} x_{2} x_{3}=-c .
\end{array}
$$

The discriminant of $x^{3}+a x^{2}+b x+c$ is

$$
D=\left\{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)\right\}^{2} .
$$

Now

$$
\begin{aligned}
& \left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right) \\
& \quad=\left(x_{1}^{2} x_{2}+x_{2}^{2} x_{3}+x_{3}^{2} x_{1}\right)-\left(x_{1} x_{2}^{2}+x_{2} x_{3}^{2}+x_{3} x_{1}^{2}\right) \\
& \quad=A-B \text { (say) }
\end{aligned}
$$

so that

$$
D=(A-B)^{2}=(A+B)^{2}-4 A B .
$$

First we compute

$$
\begin{aligned}
A+B & =x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}+x_{3}^{2} x_{1}+x_{3} x_{1}^{2} \\
& =x_{1} x_{2}\left(x_{1}+x_{2}\right)+x_{2} x_{3}\left(x_{2}+x_{3}\right)+x_{1} x_{3}\left(x_{1}+x_{3}\right) \\
& =x_{1} x_{2}\left(-a-x_{3}\right)+x_{2} x_{3}\left(-a-x_{1}\right)+x_{1} x_{3}\left(-a-x_{2}\right) \\
& =-a\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}\right)-3 x_{1} x_{2} x_{3} \\
& =-a b+3 c .
\end{aligned}
$$

Next we consider

$$
\begin{aligned}
A B & =\left(x_{1}^{2} x_{2}+x_{2}^{2} x_{3}+x_{3}^{2} x_{1}\right)\left(x_{1} x_{2}^{2}+x_{2} x_{3}^{2}+x_{3} x_{1}^{2}\right) \\
& =\left(x_{1}^{3} x_{2}^{3}+x_{2}^{3} x_{3}^{3}+x_{3}^{3} x_{1}^{3}\right)+\left(x_{1}^{4} x_{2} x_{3}+x_{1} x_{2}^{4} x_{3}+x_{1} x_{2} x_{3}^{4}\right)+3 x_{1}^{2} x_{2}^{2} x_{3}^{2} \\
& =\left(x_{1}^{3} x_{2}^{3}+x_{2}^{3} x_{3}^{3}+x_{3}^{3} x_{1}^{3}\right)-c\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right)+3 c^{2} .
\end{aligned}
$$

In order to determine $x_{1}^{3}+x_{2}^{3}+x_{3}^{3}$ and $x_{1}^{3} x_{2}^{3}+x_{2}^{3} x_{3}^{3}+x_{3}^{3} x_{1}^{3}$ we make use of the identity
$y_{1}^{3}+y_{2}^{3}+y_{3}^{3}=\left(y_{1}+y_{2}+y_{3}\right)^{3}-3\left(y_{1}+y_{2}+y_{3}\right)\left(y_{1} y_{2}+y_{2} y_{3}+y_{3} y_{1}\right)+3 y_{1} y_{2} y_{3}$,
which is easily chacked. Taking $y_{1}=x_{1}, y_{2}=x_{2}, y_{3}=x_{3}$, we obtain

$$
x_{1}^{3}+x_{2}^{3}+x_{3}^{3}=-a^{3}+3 a b-3 c,
$$

and taking $y_{1}=x_{1} x_{2}, y_{2}=x_{2} x_{3}, y_{3}=x_{3} x_{1}$, we obtain, as $y_{1}+y_{2}+y_{3}=$ $x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}=b, y_{1} y_{2}+y_{2} y_{3}+y_{3} y_{1}=x_{1} x_{2} x_{3}\left(x_{1}+x_{2}+x_{3}\right)=a c$ and $y_{1} y_{2} y_{3}=\left(x_{1} x_{2} x_{3}\right)^{2}=c^{2}$,

$$
x_{1}^{3} x_{2}^{3}+x_{2}^{3} x_{3}^{3}+x_{3}^{3} x_{1}^{3}=b^{3}-3 a b c+3 c^{2}
$$

Hence

$$
\begin{aligned}
A B & =\left(b^{3}-3 a b c+3 c^{2}\right)-c\left(-a^{3}+3 a b-3 c\right)+3 c^{2} \\
& =a^{3} c+b^{3}-6 a b c+9 c^{2}
\end{aligned}
$$

Finally

$$
\begin{aligned}
D & =(-a b+3 c)^{2}-4\left(a^{3} c+b^{3}-6 a b c+9 c^{2}\right) \\
& =a^{2} b^{2}-4 b^{3}-4 a^{3} c-27 c^{2}+18 a b c .
\end{aligned}
$$

Clearly

$$
D \equiv a^{2} b^{2}+c^{2}+2 a b c \equiv(a b+c)^{2} \equiv 0 \text { or } 1(\bmod 4) .
$$

February 25, 2004

