Chapter 6, Question 2
2. Prove that the cubic equation $x^{3}+a x+b=0$, where $a, b \in \mathbb{R}$, has three distinct real roots if $-4 a^{3}-27 b^{2}>0$, one real and two nonreal complex conjugate roots if $-4 a^{3}-27 b^{2}<0$, and at least two equal real roots if $-4 a^{3}-27 b^{2}=0$.

Solution. Let $x_{1}, x_{2}, x_{3} \in \mathbb{C}$ be the three roots of $x^{3}+a x+b=0$. The discriminant of $x^{3}+a x+b$ is

$$
-4 a^{3}-27 b^{2}=\left(x_{1}-x_{2}\right)^{2}\left(x_{1}-x_{3}\right)^{2}\left(x_{2}-x_{3}\right)^{2} .
$$

If x_{1}, x_{2}, x_{3} are all real and distinct then $\left(x_{1}-x_{2}\right)^{2}\left(x_{1}-x_{3}\right)^{2}\left(x_{2}-x_{3}\right)^{2}>0$ so that $-4 a^{3}-27 b^{2}>0$. If x_{1}, x_{2}, x_{3} are all real and not all distinct then $\left(x_{1}-x_{2}\right)^{2}\left(x_{1}-x_{3}\right)^{2}\left(x_{2}-x_{3}\right)^{2}=0$ so that $-4 a^{3}-27 b^{2}=0$. If x_{1}, x_{2}, x_{3} are not all real then two of them,say x_{1} and x_{2}, are nonreal and complex conjugates of one another (and thus unequal) and the third of them, namely x_{3}, is real, so all three are distinct. Hence $x_{1}=r+i s, x_{2}=r-i s, x_{3}=t$, where $r, s, t \in \mathbb{R}$ and $s \neq 0$. Thus

$$
x_{1}-x_{2}=2 i s, x_{1}-x_{3}=r-t+i s, x_{2}-x_{3}=r-t-i s,
$$

so that

$$
\begin{aligned}
\left(x_{1}-x_{2}\right)^{2}\left(x_{1}-x_{3}\right)^{2}\left(x_{2}-x_{3}\right)^{2} & =(2 i s)^{2}(r-t+i s)^{2}(r-t-i s)^{2} \\
& =-4 s^{2}\left((r-t)^{2}+s^{2}\right)^{2}<0,
\end{aligned}
$$

and thus $-4 a^{3}-27 b^{2}<0$.

February 24, 2004

