20. Let $K=\mathbb{Q}(\theta)$, where $\theta^{3}+4 \theta-2=0$. Is $K=\mathbb{Q}\left(\theta+\theta^{2}\right)$?

Solution. The cubic polynomial $x^{3}+4 x-2$ is 2-Eisenstein and therefore irreducible. Hence $\operatorname{irr}_{\mathbb{Q}}(\theta)=x^{3}+4 x-2$ so that

$$
[K: \mathbb{Q}]=[\mathbb{Q}(\theta): \mathbb{Q}]=\operatorname{deg}\left(\operatorname{irr}_{\mathbb{Q}}(\theta)\right)=\operatorname{deg}\left(x^{3}+4 x-2\right)=3
$$

Let $L=\mathbb{Q}\left(\theta+\theta^{2}\right)$. Clearly $\theta+\theta^{2} \in K$ so that $L \subseteq K$. Thus $[L: \mathbb{Q}] \mid[K: \mathbb{Q}]$ so $[L: \mathbb{Q}]=1$ or 3 . If $[L: \mathbb{Q}]=1$ then $L=\mathbb{Q}$ so $\theta+\theta^{2} \in \mathbb{Q}$. Hence there exists a rational number a such that θ is a root of the quadratic polynomial $x^{2}+x-a$, contradicting that the minimal polynomial of θ over \mathbb{Q} is of degree 3. Hence $[L: \mathbb{Q}] \neq 1$ and so $[L: \mathbb{Q}]=3$. Thus $L=K$, that is $K=\mathbb{Q}\left(\theta+\theta^{2}\right)$.

February 28, 2004

