5. Let m be a cubefree integer. Let $K=\mathbb{Q}(\sqrt[3]{m})$. Determine all the monomorphisms from K to \mathbb{C}.

Solution. As m is a cubefree integer, a simple argument shows that

$$
\operatorname{irr}_{\mathbb{Q}}(\sqrt[3]{m})=x^{3}-m
$$

Hence

$$
[K: \mathbb{Q}]=[\mathbb{Q}(\sqrt[3]{m}): \mathbb{Q}] \operatorname{deg}\left(x^{3}-m\right)=3 .
$$

Thus there are exactly three monomorphisms : $K \rightarrow \mathbb{C}$. Now

$$
\begin{aligned}
& \sigma_{1}\left(a+b \sqrt[3]{m}+c(\sqrt[3]{m})^{2}\right)=a+b \sqrt[3]{m}+c(\sqrt[3]{m})^{2}, \\
& \sigma_{2}\left(a+b \sqrt[3]{m}+c(\sqrt[3]{m})^{2}\right)=a+b \omega \sqrt[3]{m}+c \omega^{2}(\sqrt[3]{m})^{2}, \\
& \sigma_{3}\left(a+b \sqrt[3]{m}+c(\sqrt[3]{m})^{2}\right)=a+b \omega^{2} \sqrt[3]{m}+c \omega(\sqrt[3]{m})^{2}
\end{aligned}
$$

where $a, b, c \in \mathbb{Q}$ and ω is a complex cube root of unity, are easily checked to be distinct monomorphisms from K to \mathbb{C}. Thus $\sigma_{1}, \sigma_{2}, \sigma_{3}$ are all the monomorphisms from K to \mathbb{C}.

February 24, 2004

